# デルタ型潜堤による津波の減災効 果に関する実験的研究

# 岸本 治1・平石 哲也2

# Tsunami Mitigation in a Delta-type Submerged Breakwater

# Osamu KISHIMOTO<sup>1</sup> and Tetsuya HIRAISHI<sup>2</sup>

## Abstract

Submerged breakwaters are widely employed to dissipate wind wave energy and to protect beach erosion. Such submerged breakwaters are applicable to nourish the sea environment and to keep the landscape in coastal lines. One of the breakwater types is the delta-type submerged breakwater which has been employed to concentrate wave energy and to twist the principal wave ray. The breakwater is applicable to reduce stormy waves and to disperse wave energy behind it. Meanwhile tsunami mitigation is urgent problem in coastal area. Tsunami is divided into two categories: one is the Level 2 (the probability is law but the height is gigantic). Another is the Level 1 tsunami (the probability is high but the height is relatively small. In the paper the application of delta-type submerged breakwater for mainly Level 2 tsunami attack is experimentally discussed. The combination of delta-type breakwaters has been mainly investigated. Coastal dike size might be reduced by application of the breakwaters.

# 1. はじめに

特徴のある形状の潜堤や構造物を用いて、それ らによって生じる波の屈折や反射を利用して、波 浪制御を試みる研究はこれまでにも成されてい る。鈴木ら (1995) は、それまで海浜安定工法と して用いられてきた突堤群工法で形成される海浜 が、平面的に櫛状の地形となり、人工的な突起が

 <sup>1</sup> 国土交通省北海道開発局 Hokkaido Development Bureau, Ministry of Land, Infrastructure and transport 目立つことで,景観上の問題となることに対し, 新たに直線上の海浜を形成する工法として「フレ ネル潜堤」を提案した。

平石ら(1998, 1999)は、京都府の天橋立海岸 において、小型の扇形潜堤を用いた海浜安定工法 を検討した。天橋立海岸では、砂移動の上手側に ある日置港、江尻港での防波堤建設により沿岸漂

2 京都大学防災研究所

Disaster Prevention Research Institute, Kyoto University

本報告に対する討論は平成27年11月末日まで受け付ける。

砂が遮断され,海岸侵食が顕在化した。そこで当 初,突堤が導入され,さらに1986年よりサンドバ イパス工法を組み合わせて実施した結果,安定し た海浜形状が形成された。しかし,このときの海 浜形状は突堤の上手側のみに砂浜が広がる櫛形地 形であり,景観面等での問題があった。そのため, 突堤の上手側,下手側ともに砂が堆積した連続的 な汀線形状となるように,屈折による波向の変向 を期待して突堤の先端に捨石堤を用いた小型の扇 形潜堤が導入された。その後,砂の堆積状況,施 工費,施行時間などの点で最適な形状を求めるた め,扇形潜堤に加え,中心角を小さくした改良扇 形や三角,およびL型等様々な形状の潜堤を用 いた模型実験や現地観測を実施し,堆砂状況を検 討した。

また、オーストラリアにおいて、侵食対策だ けでなく、サーフィン等のレジャー目的にも適 したリーフの開発が進められており、例として surfing reefs (Black ら, 2009) 等がある。日本に おいても、中野ら (1993) は、サーフ・ポイント として知られる徳島県海部川河口の海底地形に着 目し、ほぼ同じ形状を持つデルタ型の人工リーフ を、面的な漂砂制御などの防災機能に加え、巻き 波や斜め砕波,離岸流の固定といったサーフィン に適した砕波を生成させてレジャー面でも活用で きる特性をあわせもつ海岸構造物として考案し、 模型実験を実施した。さらに中野ら (1995) は, 潜堤への集波効果を高めるため、集波装置として クレセント型の潜堤をデルタ型リーフの前面に設 ける工法を提案した。これにより、波をリーフ頂 部に収れんさせた後、デルタ型リーフ上で斜め砕 波を発生させることを目的とし、波高増幅率、お よび増幅範囲が増加することを確認した。

# 2. デルタ型潜堤の概要

デルタ型潜堤の基本形は図1に示すような,波 向に対して前方側が後方側に比べて長くなる変則 的な四角錐型の潜堤である。この潜堤を複数基, 平面的に配置し,潜堤に向けて津波を屈折させて, エネルギーを集中させて,相殺させることで,津 波高,流速等,津波の持つ総エネルギーを弱める ことを目的とし、このような形状としている。

今回用意した模型はモルタル製であり,その寸 法は図2の詳細図に示すように,長さ75 cm×幅 40 cm×高さ30 cmである。頂点から先端(図2 の点A)までの距離が60 cm,勾配が1/2,頂点か ら後端までの距離が15 cmとなっている。模型縮 尺は1/50に設定している。

今回は基本形の模型を2基用意し、基数や配置 方法を変えて、孤立波の減衰効果を調べた。さら に砕石を用いて潜堤を覆い、図3のように2倍幅、 3倍幅の潜堤について減衰効果を検討した。砕石 を用いた場合でも津波減衰効果が得られれば、通 常のケーソン堤よりも建設コストの削減を図るこ とができる。

# 3. デルタ型潜堤を用いた津波減衰実験

実験ではデルタ型潜堤の個数,複数のときの配 置方法,また模型の幅を変えて,どのような効果



図1 デルタ型潜堤基本形の寸法図(頂部の高 さは30 cm である)



64

が得られるかを検討した。特に,津波高について はデルタ潜堤の前後で平面的にどのように変化す るのかを検討する必要があるため,津波が減衰せ ずに伝播するよう,水深を一定に設定した平面水 槽において実験を行った。

#### 3.1 実験概要

今回の模型実験は、京都大学防災研究所宇治川 オープンラボラトリー第3実験棟にある実海域再 現水槽(水路長30m×水路幅45m×深さ1.0m) で行った。この平面水槽において造波装置の正 面部分に仕切りを設置し、図4に示すような5m 幅で一定の直線水路を設けた。水路の詳細図を図 5に示す。以下、図5に示すように水路縦断方向 をx方向、水路横断方向をy方向とし、図の矢印 の向きを正とする。そしてx方向の流れを流速U,



2倍幅

図3 基本形の2倍幅と3倍幅の模型潜堤(頂 点の高さは同一)

3倍幅



y方向の流れを流速 Vと定義する。

この水路の中心線上で,造波装置の基準位置 から3.7 mのところに潜堤の先端が来るように模 型を設置した。模型縮尺は1/50を想定している。 水深は水路底面から30 cmであり,ちょうど模型 の頂点と水面が一致する高さである。計測器は容 量式波高計と電磁流速計を用いた。模型の先端か ら前方20 cmで, y軸と平行な軸を前面津波高測 定位置とし(図6参照),さらに潜堤の背後域で, 前面の波高計から x 軸方向の軸上に波高計を設置 し,津波高を測定する。

流速計は水面から下方15 cm のところに計測部 がくるように設置した。波高計,流速計,各々の データサンプリング間隔は50 ms とした。データ 収録時間は孤立波が作用し,潜堤背後の波高計で 水位変化が収束するまでを集録できるように約 25 s とした。

#### 3.2 実験条件

図7に作用させた孤立波の代表波形を示す。孤 立波の波長は物理的に決めることは難しく,閾値 を設けて,その値を越える時を波の始まりとし, 負の閾値を水面が横切るときを波の終わりと定義 して1波の代表波長とした。ここでは,始まりの 閾値として波形の鋭さが急に変化する値として閾 値2cmを用いた。水面が閾値を横切る時間をTf



図5 計測器の配置と方向の基準(x 方向の流億 を U, y 方向の流速を V とする)



図6 潜堤1基配置の時の計測点の位置(赤丸は波高計, unit; cm)



図7 孤立波の波長を簡易的に求めるモデル

と定義した。孤立波のピークが過ぎると水位は急速に低下するが一度少し上昇してから再度低下する。この一度上昇する範囲も一つの波とみなすために、後方の閾値は-3 cmとした。この閾値を水面が横切る時間が *Tb* である。津波の波速は $\sqrt{gh}$ , であり、波長 *L* は以下の式で簡易的に計算できる。ここで, g は重力加速度, *H* は水深である。

$$L=(Tb-Tf)\sqrt{gh}$$
(1)

#### 3.3 実験条件

本実験では、モルタルで作成されたデルタ型潜

堤の模型と砕石を用いて、以下のシリーズとケー スで実験を行った。潜堤の配置パターンとして潜 堤が1基の場合(Case1-)、2基を横断方向に配 置いた場合(Case2-)、2基を縦断方向に配置し た場合(Case3-)の3つの条件で実験を行った。 さらに、各シリーズについて潜堤1基ごとの幅を 変えるため模型は原型をそのまま用いたケース (40 cm)模型と砕石により模型幅の2倍(80 cm) にしたケース、模型幅の3倍幅(120 cm)にした ケースを設定し、合計9ケースで実験を行った。 各ケースの試行は3回ずつであり、その平均値を 実験結果としている。作用させる波が同一であり、 3回のばらつきがほとんどないことを確認して、 本実験では3回の実験結果を平均して確定値とし た。

幅広潜堤の場合は、砕石で覆うことで、その部 分では津波が透過することを考慮する必要があ る。しかし、本実験では津波が短時間に通過する ため、潜堤が崩れるなどの変形は見られず、形状 を維持していることから、そのまま透過しないも のとみなし、潜堤の幅が津波に与える影響に着目 して、結果を比較することとした。また、砕石に より潜堤の幅のみ変化させるため、模型の長軸方 向の長さは基本的には変化しない。しかし、潜堤 背面が急勾配であるため、潜堤背面に砕石およそ 1層分後ろに長くなるように積み上げた。縦並び の場合,2基の潜堤は模型が直接,接しており, 最後部の模型の背後のみ砕石1層分長くなる。

図8に本実験で実施した潜堤配置を示す。それ ぞれ,1基,2基を用いて,単独,横並びに複数, 縦ならびに複数を配置している。

#### 3.4 実験で用いる津波の特性

潜堤がない状態での流速ならびに流向の変化を 図9に示す。津波波高が大きくなり最大流速が変 わっても流れの向きは変化していない。すなわち, 潜堤がなければ流向はほとんど0度(造波面に鉛 直)であり、実験に用いる波として適切である。 なお、本実験では前述のように津波を模擬するも のとして孤立波を造波した。本造波装置で設定値 として入力されるのは,任意の水深と波高であり, 任意の周期を設定することはできない。

なお,最大流速は以下の式(2)を用いて定義 される流速の最大値である。図5に表記されてい る x 方向と y 方向を U および V の正の向きとした。 流速 Vo,流向 θ を以下の式(3)を用いて定義する。

$$Vo = \sqrt{U^2 + V^2} \tag{2}$$

$$\theta = \arctan(\frac{v}{U}) \tag{3}$$

ここに, 流速 *Vo* は流速の絶対値 (cm/s), θ は 流向(°)である。同じ設定津波高の場合, 最大流 速のばらつきは少なく, 構造物を設置しない場合 には津波高が大きくなるにつれて図9のように約 20 cm/s から約60 cm/s まで線形に増加した。

#### 3.5 解析方法

# (1)津波高

同じ計測器の配置,同じ設定津波高で行った3 回の実験津波の平均値により各計測点における津 波高を求める。前述のように潜堤背後の波高計*x* 軸に対して負の方向に前面津波高を測定する波高 計を設置しているため,これら2つの計測値をも とに,デルタ潜堤による津波の減衰効果を示す。 ここでは,津波高の減衰効果を検討するに当たり, 津波高比 *Hb/Hf* を用いる。ここに,*Hf* は前面津



図9 最大流速と流向の関係

波高(cm), Hb は潜堤背後での津波高(cm)である。

津波高比 Hb/Hfでは,別々の波高計の計測値 を用いるが,造波装置を基準位置から引くときに 水面が乱れるため各波高計の初期水面にズレが生 じる。つまり,計測結果をそのまま用いることが できない。孤立波が測定される前の静水面の状態 で7.5s間(150点)の水位計測を行い,各計測点に おける平均値を,それぞれの基準とした。

#### (2)周期・波長

前面に設置された CH2における観測波形を用 いて,周期・波長の変化を調べる。本実験では, ゼロアップクロス法 (合田, 2012) を用いて前述 のように閾値を 2 cm よび 3 cm として, 各波の 波長を定義した。

# (3) 流速・流向

流速については、前述のように流速の縦断方向 の成分の計測値 Vより式(2)および式(3)を 用いて流速の絶対値  $V_0$ と流向 $\theta$ を算出した。

## 4. 実験の結果

#### 4.1 津波高の減衰効果

本実験結果として、各波高計で計測された最大 津波高(cm)につて議論を行う。潜堤1基の場合 (Case1-1, 1-2, 1-3), 潜堤2基(横方向)の場 合(Case2-1, 2-2, 2-3), 潜堤2基(縦方向)の 場合(Case3-1, Case3-2, Case3-3)のパターン ごとの津波高の減衰効果を検討するに当たり,津 波高比 Hb/Hfを用いる。なお、デルタ型潜堤は, 津波の向きに対して左右対称であるため対称軸か ら片側のみでその効果を検討した。

9つの配置パターンで,対称となる中心軸を Line-A,また潜堤の法尻から20cm離れた Line-を Line-Bとして,この2つの軸で津波高の変化を 検証した。

潜堤1基の場合 (Case1-1, 1-2, 1-3), 潜堤2 基(横方向)の場合 (Case2-1, 2-2, 2-3), 潜堤 2基(縦方向)の場合 (Case3-1, 3-2, 3-3)の津 波高計測箇所, Line-A (中心軸)と Line-B{ 潜堤 側端から40cm 外側の軸)における津波高比のグ ラフをケース毎にまとめたものを, 図10から図18 にかけて示す。図中の Ho は潜堤の高さ (30 cm) であり, 潜堤前面の津波高 Hf を無次元化するた めに用いられている。

津波高計測場所箇所の図面は一目盛が10 cm と なっており、津波は図面に向かって左から作用す る。津波高比のグラフは、縦軸が前面波高計の位 置を0として水路縦断方向の距離 x (cm)を潜堤 長 Lo で除したものである。計測された前面津波 高は潜堤高 Ho で無次元化をして表記している。

それぞれ以下の(1)(2)(3)からなる。

#### (1) 潜堤1基の場合

このケースでは計測箇所の図10(1)からわか るように、中心軸となる Line-A は潜堤の尾根線 を通っている。そのため、潜堤通過直後にわずか に津波高が低減し、さらに x/Lo が1に戻る、あ るいは前面より増幅した。一方、Line-B では、 Line-A と異なり、x/Lo が大きくなるにつれて、 Hb/Hf の変化が小さくなる傾向がみられた。

基本幅 (Case1-1) の場合, Hb/Hf は最も小さく





図10 Casel-1における津波高比 (Line-A; 中心 軸, Line-B; 中心軸から40cm 外側)

なるもので、Line-A上においては0.93、Line-B 上においては0.95と Hb/Hfへの影響はほとんど見 られなかった。なお、図中の太い青線は潜堤の位 置を表している。

2倍幅(Case1-2)の場合,基本幅に比べて, Hf/Ho が変化したときに Hb/Hf のばらつきが見 られる。また、Line-Aでは、Hb/Hfが小さくなり、 Hf/Ho = 0.41では、x/Lo = 1.88において Hb/Hf =



(1) Case1-2 における津波高の計測地点(津波は向かって左から作用する)





図11 Case1-2における津波高比 (Line-A; 中心 軸, Line-B; 中心軸から60cm 外側)

1.00と前面と同じになった。

Line-B では最も小さいもので Hb/Hf = 0.93と 僅かながら基本形に比べて大きくなった。3倍幅 (Case1-3)の場合, Hf/Ho = 0.13のとき, x/Lo = 2.13 で *Hb/Hf* は小さくなっているが. 3 倍幅 (Casel-3) の場合, Hf/Ho = 0.13のとき, x/Lo = 2.13で *Hb/Hf*は小さくなっている。*Hb/Hf* = 0.47のとき







図12 Case1-3における津波高比 (Line-A; 中心 軸, Line-B; 中心軸から60cm 外側)

は*Hb/Hf* = 1.06と前面に比べて大きくなった。

潜堤の最高点背後において Hb/Hf が大きくな る傾向は、潜堤の幅が広くなるほど顕著になった。 これらの結果から、潜堤の最高点(中心軸)では 背後において Hb/Hf が大きくなり、潜堤の側端 の周囲では Hb/Hf がちいさくなることが分かっ た。



Case2-1 における津波高の計測点(津波は向かって左から作用する)

Line-A

 $H_f/H_0$ 

- 0.127

- 0.198

- 0.228

-- 0.383 -A-

- 0.483

-·×·- 0.422

0.312

1.1

1

0.8

0

潜堤長

0.5

1

 $x/L_{\theta}$ (2) Line-A 上の変化

1.5

2

2.5

 $\frac{f}{H} \frac{1}{q}$ 

(2) 潜堤2基(横方向)の場合

図13~図16のケースでは、中心軸である Line-Aは、潜堤の尾根ではなく2つの潜堤間の 谷を通っている。そのため, Line-A では潜堤通



(1) Case2-2 における津波高の計測点 (津波は向かって左から作用する)



(2) Line-A 上の変化



図13 Case2-1における津波高比 (Line-A; 中心 軸, Line-B; 中心軸から60cm 外側)





過直後に *Hb/Hf* が小さくなる傾向がみられ, さらに *x/Lo* が大きくなると *Hb/Hf* は1.0に近づく傾向がみられた。

基本幅 (Case2-1) の場合, Line-A において, x/Lo = 1.47では Hb/Hf は0.93と最も低減し, さら



(1) Case2-3 における津波高の計測点(津波は向かって左から作用する)

Line-A 1.1  $H_f/H_0$ 0.132 0 207 1  $H_{f}$ - 0.253 **H** 0.9 0.318 -- 0.379 潜堤長 ×·- 0.429 0.8 - 0.468 1.5 0 0.5 1 2 2.5  $x/L_{\theta}$ (2) Line-A 上の変化





に x/Lo が大きくなると Hb/Hf は0.96から0.98程 度になる。Line-B では,最も小さくなるもので, Hb/Hf = 0.94と潜堤1 基の場合とほとんど変わ らない。2 倍幅 (Case2-2) では,Line-A におい て,Hf/Ho = 0.46のときに Hb/Hf = 0.87と比較的 顕著に小さくなるが,x/Lo = 1.75では Hb/Hf = 1.0になる。Line-B では,x/Lo が大きくなるほど Hb/Hf は小さくなり,最小では Hb/Hf = 0.92 (Hf/Ho = 024のとき)となった。3 倍増(Case2-3)









では、Line-Aの潜堤通過直後において、Hb/Hf は小さくなり、最小ではHb/Hf = 0.89 (Hf/Ho = 0.3のとき)まで小さくなるが、さらに x/Lo が大 きくなると Hb/Hf は0.96程度になる Line-B で Hb/Hf が小さくなる傾向は2倍幅よりも大きく、 最小でHb/Ho = 0.38のとき)になった。

全体の傾向として,中心軸である Line-A で は *Hf/Ho* が大きくなるにつれて潜堤通過直後の *Hb/Hf* は比較的顕著に小さくなるが, Line-B で







図17 Case3-2における津波高比 (Line-A;中心 軸, Line-B;中心軸から60cm 外側)

は, *Hf/Ho*が大きくなるにつれて *Hb/Hf* は大き くなった。また, 潜堤の幅が広いほど *Hf/Ho*の 変化は大きくなった。

# (3) 潜堤2基(縦方向設置)の場合

このケースでは2個の潜堤の合計の長さを潜堤 長 *Lo* とし,図中においては2色で色分けして位 置を示した。











この実験では (図16~18), 潜堤1基と同様に, 中心軸である Line-A は潜堤の尾根線を通るため Line-A において *Hb/Hf* は大きくなる傾向がみら れ, 潜堤1基の場合よりも顕著に表れた。

基本幅(Case3-1)の場合,Line-Aでは, Hf/Ho = 0.12のときに前面から x/Lo = 1.23のとこ ろでHb/Hfの変化はほとんどなく,0.95から0.99 になった。2倍幅(Case3-2)では,Line-Aにお いてHb/Hfが大きくなる傾向にあり,Hf/Ho = 0.25を超えると潜堤背後において1よりも大きく なり,Hf/Ho = 0.47のときにはHb/Hf = 1.12となっ た。

Line-B において, *Hb/Hf* が小さくなる傾向 はそれほど見られず, 最小で *Hb/H* f = 0.93 (*Hf/Ho* = 0.25のとき)であった。3 倍幅(Case3-3) では, Line-A において *Hb/Hf* が顕著に大きくな り, *Hf/Ho* が大きくなるほどその傾向は強くなり, 最大で *Hb/Hf* = 1.21 (*Hf/Ho* = 0.46) になった。

 一方、Line-Bでは、x/Loが大きくなるほど Hb/Hfの減少みられ、最も効果の大きなもので Hb/Hf = 0.89(津波高6.31cm)となった。

全体として, 潜堤の幅が広がると Line-A にお いて *Hb/Hf* は大きく, Line-B において小さくな る傾向が確認された。また, Line-A での *Hb/Hf* は, *Hf/Ho* が大きくなるほど, 大きくなるが, Line-B では小さくなった。

#### 4.3 波長と津波減衰高減衰効果の関係

人工リーフの設計において波浪低減効果の評価に用いられる人工リーフの波長天端高比 B/ Lとの関係を検討した。デルタ型潜堤では天端幅の代わりに潜堤長を Loとして,潜堤長波長比 Lo/Lを用いた。また,津波の波長は前面に設置された波高計 CH2での観測波形をもとに算出し, 津波高比 Hb/Hfについては,各ケース,潜堤背後で得られたもののうち最も低減された値を採用した。これと Hb/Hfの関係を図19に示す。縦軸は津波高比 Hb/Hf,横軸は潜堤長波長比 Lo/L をとっている。3倍幅のケースに限り,累乗近似をとってその傾向を記載している。

しかし,図に示すように Hb/Hfと Lo/L の相関 があるとは言い難い。孤立波の減衰において,潜 堤長の与える影響は小さいと考えられ,実際の津 波ではさらに波長が大きくなるため,構造物の長 さが有効に作用するためには,かなり大きな構造 物が必要と考える。

#### 4.4 流速の減衰効果と潜堤まわりの流れ

4.2で示した記述からの9パターンのうち,最 も減衰効果が高かった3倍幅,横並びケース



図19 津波波高比と相対波長比の関係

(Case2-3)で,潜堤の中心軸で,頂点から30 cm 背後に流速計を配置して,流速・流向を計測,解 析した。配置による最大流速の変化は顕著ではな いことはすでに明らかになっている。

図20には、最大流速計即時の流向を示す。せん ていの外側では流向は変化していないが、潜堤の 背後では流向は変化し、潜堤中心軸方向へ傾いて いる。流向は5°から10°程度となり、また2倍幅 よりも3倍幅の方が角度はわずかに大きくなる。 このように、潜堤背後において津波流向が観測で き、津波の収れんがあることと、逆に津波のエネ ルギーが収れんしない水域があることが判明し た。

図21に前面津波高と最大流速の関係性を示す。 縦軸が最大流億(cm/s),横軸が前面での津波高 の平均値(cm)をとっている。潜堤背後に配置さ れた Case3-3では潜堤の前方50 cm に配置された 計測器において,潜堤なしの状態に比較して,最 大流速が約 8 cm/s も小さくなっている。このこ とから,津波の収れんだけでなく,流速そのもの も潜堤によって減衰しており,津波のエネルギー を減衰できる役割を有している。

収れん効果は、津波の屈折によるものと思われ るが、本実験では十分な流向・流速計を配置して おらず屈折効果を十分に解析するには至っていな い。

しかし、図20に示した流速計の4ポイントで流 向を調べると、屈折効果がある程度生じているこ とが分かる。図22は潜堤背後に位置する測点での 流向を示す。Point2-3.2では津波高が大きく流速 も大きい。流向は x 軸方向から約20°傾いている。 Point2-3では、津波高が大きくなるにつれて、屈 折は小さくなり約10°となった。このように、幅 広潜堤を横方向に展開させることにより、津波の 主波向が変更できることが示唆できた。

## 5. まとめ

デルタ型潜堤を用いた津波減衰効果の実験で は、水深一定の平面水槽において孤立波を造波し、 潜堤の形状、配置方法を変化させて、津波高、津 波の波長、流速への減衰効果について評価した。 本実験で得られた主要な結果は以下の通りであ る。

①津波高については、その形状から当初の目的通り、潜堤の尾根線に向かって津波が集まる様子が確認された。潜堤1基の場合においては津波高への影響は僅かなものとなるが、尾根線となる軸では、前面に比べて津波高が高くなり、側



図20 潜堤背後の津波の流向

線では低減される傾向が見られた。さらに, 潜 堤2基を横並べに配置した場合, 両潜堤間では 津波高比が0.84程度と低減される。しかし, こ の場合さらに距離が離れると津波高は徐々に高 くなり, 前面津波高と変わらなくなるため, 津 波に対しては横方向だけでなく, 奥行方向への 配置も検討する必要があると考えられる。潜堤 2基を縦並べに配置した場合, 尾根線背後にお いて1基の場合よりも津波高が高くなり, それ に伴い側線軸で津波高が低減される傾向が見ら れた。

②潜堤幅は、ケースによりばらつきはあるものの幅広になるほど、潜堤側線での津波高の低減、尾根線での増幅という効果が顕著に現れた。例えば3倍幅潜堤を2基縦並びに配置した場合、潜堤背後での津波高の計測により、尾根線通過後では最大で1.2倍近くにまで津波が増幅され





図22 最大流速の変化と平均流向の関係

るようになることが確認された。また、尾根線 への集波効果により津波の側端では、潜堤通過 して距離が大きくなるほど津波高が低減され、 最も効果が大きいときで前面に比べて0.84と約 15%低減が確認された。全体として、津波高の 低減効果は津波が高くなるほど減衰効果も小さ くなることが分かった。

③潜堤周りの流向についても解析したところ、模型をそのまま用いた基本幅では流向はほとんど 津波の波向と一致したものの、幅広になることで、潜堤を回り込むような波向となることが確認された。

今後の課題を以下にまとめる。

- ①今回の実験で、当初の模型よりも3倍幅に改良した潜堤で、津波高を最大で約1.2倍に増幅させ、流速も大きく減衰させることが分かり、津波を収れんさせる効果が確認された。さらに収れん効果を高め、砕波させることで津波減衰効果を高める必要がある。
- ②今後は幅広潜堤の模型を用いて、複数基を横方 向、奥行方向に配置した水理実験で収れん効果 をより高める方法を検討する必要がある。
- ③今回の実験では、幅広潜堤には砕石を用いているため、透過性を持つ。これが不透過性を持つと結果がどのように異なるのか検討する必要がある。
- ④今回は、潜堤の特性を調べる基礎的な研究で あったため、津波の入射方向は潜堤の真正面から来ることを想定して行った。入射方向が異な る場合、背後での屈折の影響はどう変わるのか 検討する必要がある。すなわち、津波の作用方 向の変化が及ぼす影響についても検討しておく 必要がある。
- ⑤沿岸域における防災・減災構造物として、津波だけでなく、波浪やうねり等の長周期波に対する効果も検討する必要がある。
- ⑥本実験では、水深一定の水槽で実験を実施したが、潜堤の構造や形状等、現地適用性を考慮する必要がある。

東日本大震災以降,東北地方沿岸部を中心に沿 岸域での津波防災への注目が集まっており,巨大 防潮堤の建設等,復興が進められている。一方で, 巨大な防潮堤の建設を望まない住民の方々の声も 挙げられるようなった。

例えば、9.9メートルの防潮堤計画が持ち上 がっている気仙沼市鮪立地区は、急斜面に迫り、 平地が少ない漁村である。そのため、防潮堤によ りさらに平地がなくなることで、過疎化が進むこ とが懸念されており、住民の方々は防潮堤の高さ を下げて、平地部に住めるような計画を望んでい る(河北新報社、2013)。

また,兵庫県南あわじ市に位置する福良港では, 100年に1回程度の頻度で発生すると想定される レベル1津波の想定高が高く,背後地での土地利 用等もふまえて,防潮堤の嵩上げではなく,湾口 での津波低減を目的とする湾口防波堤の整備が検 討されている。しかし,従来の重力式防波堤では 湾内で営まれている養殖業への影響や航路の確保 などに影響することが指摘されており,直立浮上 式やフラップゲート式といった可動型防波堤など も考慮しながら,今後の防災対策が検討されてい る (兵庫県, 2013)。

このように,大規模な港湾部ではなく,陸上の 土地利用に制限のある地域や,湾内での漁業・養 殖業への影響が懸念される地域において,湾口防 波堤などに代わる新たな減災方法が必要である。

本研究において, デルタ型潜堤は津波を収れん させることで, その周囲において津波高の低減効 果が見込まれるほか, 津波の波向を変向させ, 最 大流速が低減され, 津波エネルギーの減衰につな がることが確認された。また, 幅広潜堤において 砕石を用いたものでも一定の効果が確認された。 このように砕石を用いた構造とすることで、通常 のケーソン堤よりも建設コストを削減できる可能 性がある。

#### 参考文献

- 3) 鈴木康正・上原 功・冨田康大・望月徳雄・平 石哲也(1995):フレネル潜堤による波向・波高 変更効果に関する模型実験,海岸工学論文集, 第42巻, pp.701-705.
- 2) 平石哲也(1998):小型潜堤を用いた海浜安定 工法に関する模型実験,港湾技術研究所資料, No.896, 22p.
- 3) 平石哲也・北山 斉・佐藤恒夫・中野嘉和・大 音 満・斎藤亮一・坂井隆行・岩垣雄一(1999): 小型潜堤による海浜安定工法の現地適用性につ いて,海岸工学論文集,第46巻, pp.731-735.
- K. Black, S. Mead (2009): Design of Surfing Reefs, REEF JOURNAL, Vol.1, No.1, pp.177-191.
- 5) 中野 晋·吉田善昭·中野孝二·三井 宏(1993): サーフィンに適するデルタ型リーフ周辺の流れ と漂砂,海洋開発論文集, vol.9, pp.229-234.
- 6) 中野 晋・三井 宏・三島豊秋 (1995): クレ セント型潜堤およびデルタ型リーフによるサー フィン共存のための波浪制御,海洋開発論文集, vol.11, pp.43-48.
- 7)合田良實(2012):海岸工学【その誕生と発展】, 技報堂出版, p.61
- 8)河北新報社(2013):http://www.kahoku.co.jp/ spe/spe\_sys1071/20131020\_01.htm 参照日2014-2-7
- 9) 兵庫県 (2013): (淡路地域) 福良港湾口防波堤 整備検討委員会 資料 http://web.pref.hyogo. lg.jp/awk11/documents/hu001.html 参照日 2014-2-7

(投稿受理:平成26年4月22日 訂正稿受理:平成26年9月30日)

#### 要 旨

三角錐型のデルタ型潜堤を開発し、その津波低減効果を模型実験で調べた。デルタ型潜堤は 沖側が緩やかな尾根状になっており、波の収れん効果を利用して、背後に波を収れんさせ、そ のほかの海域でエネルギーを減少させることを期待したものである。基本形の沖側法尻から頂 点までの長さと、頂点での幅は3:2である。この幅の比を3倍にして、横に2個あるいは縦 に2個並べると波の収れん効果が波向きの変化として観測され、大規模なデルタ型潜堤を複数 基並べることで、津波の減災を図ることが可能と考えらえる。