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1. Introduction
The city of Bam in southeastern Iran was hit by a 
strong earthquake on December 26, 2003. About 
43,200 people lost their lives [1], many due to the col-
lapse of masonry buildings. Masonry structures are 
low-cost and construction practices are simple, so 
many people in developing countries live in such 
buildings. However, masonry structures are vulnera-
ble to earthquakes. Therefore, the seismic collapse 
mechanisms of such structures need to be understood 
in order to develop effective reinforcement measures. 
To this end, the development of a numerical method 

that can accurately simulate the seismic behavior of 
masonry structures is needed.

There are two types of numerical simulation 
methods that can handle seismic behavior. One is 
based on continuum modeling, and the other, on dis-
continuum modeling.

Among numerical simulation methods, the finite 
element method (FEM) [2] is the most common tech-
nique for the analysis of a continuum. However, the 
FEM is based on the mechanics of the continuum and 
uses a continuous shape function, so it has difficulty 
in solving failure and collapse phenomena. 
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ABSTRACT
In this study, we propose a new distinct element method (DEM) that considers element 

deformability for failure analysis of masonry structures. Many people in developing 
countries live in masonry structures. In earlier DEM schemes, a structure is modeled 
as an assembly of rigid elements, but element deformability cannot be considered. The 
deformation of a structure can be modeled by overlapping between elements, but Poisson’s 
effect cannot be modeled. However, bricks used in developing countries can readily be 
deformed due to their low stiffness. Therefore, it is preferable to also consider element 
deformability in the DEM. In the new DEM, each element is divided into two parts: an 
inner part that considers deformation of the element itself, and an outer part that deals 
with contact between elements. Deformation of a structure can be modeled by overlapping 
between elements and deformation of the elements themselves. The validity of the method 
is confirmed through a comparison of the elastic deformation with a finite element model. 
It was found that the original DEM and the proposed method show different failure patterns 
of seismic behavior due to Poisson’s effect.
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A new FEM, referred to as FEM-β, that can be 
regarded as a FEM with a special displacement field 
was proposed by Oguni et al. in 2004 [3]. In FEM-β, 
the continuous shape function is replaced by a discon-
tinuous shape function, which enables it to solve fail-
ure phenomena. However, it does not model the re-es-
tablishment of contact between elements, so it cannot 
simulate collapse behavior.

A method based on discontinuum modeling is 
more suitable for simulating failure and collapse be-
haviors. The distinct element method (DEM) [4] is an 
established numerical simulation method for a discon-
tinuum. In the DEM, a structure is modeled as an as-
sembly of rigid elements, and a spring and dashpot 
are generated between two elements in contact. In the 
original DEM, there are no forces resisting tension 
between elements; therefore, it was impossible to 
simulate the behavior of a continuum. To give conti-
nuity to this discrete model, a spring that resists ten-
sion was added and this improved method is called 
the modified DEM (MDEM) [5] or the extended 
DEM (EDEM) [6]. In the MDEM and EDEM, the 
structure is modeled as an assembly of circular ele-
ments.

However, the elements are modeled as a rigid 
body, so deformation of the elements is not consid-
ered. Deformability of the structure can be modeled 
by overlapping between elements. Failure is modeled 
by breaking the spring. A method of determining the 
theoretical spring constant has not been established, 
so the value is generally determined experimentally 
or simply based on one-dimensional (1D) wave prop-
agation equations. Therefore, the reliability of the re-
sults is not high.

A refined DEM [7] was then proposed by Furu-
kawa et al. in 2011. In this scheme, a restoring spring 
resisting tension is included, the structure is modeled 
as an assembly of hexahedral elements, and the sur-
face of each element is divided into many segments to 
which springs and dashpots are attached. This seg-
mentation allows theoretical spring constants to be 
determined using three-dimensional (3D) stress-strain 
relationships. However, the elements are still modeled 
as a rigid body in the same way as in the original 
DEM, and the deformability of elements and Pois-
son’s effect cannot be expressed. Because the bricks 
used in developing countries that we target in this 
study readily deform due to their low stiffness, it is 

preferable to consider the deformability of the ele-
ments themselves in the DEM. Therefore, we have 
developed a new DEM that considers the deformabil-
ity of elements. The results of the new DEM are com-
pared with those of the refined DEM to investigate 
the need to consider element deformability.

2. Refined DEM
2.1 Basic concept
Like the original DEM, the refined DEM models a 
structure as an assembly of rigid elements. The sur-
face of an element is divided into many segments 
(Fig. 1 (a)), and a spring and a dashpot are attached to 
each segment (Fig. 1 (b)). Therefore, the elements 
have multiple springs on the surface. This segmenta-
tion of the surface allows the spring constant to be de-
fined theoretically, which is the main improvement 
over earlier methods. For more details, see [7]. A re-
storing spring, which models the elasticity of the ele-
ments, is set between continuous elements (Fig. 1 (c)). 
Structural failure is modeled as breakage of the re-
storing spring, at which time the restoring spring is 
replaced with a contact spring and dashpot (Fig. 1 
(d)). If two elements are initially continuous, the re-
storing spring is set between the elements until failure 
occurs. If these two elements recontact each other 
again after the failure, a contact spring and dashpot 
are set between the elements.

A contact spring and dashpot are used for simu-
lating the contact, separation, and recontact between 
elements. The contact dashpots, which are set in par-
allel with the contact springs, are introduced to ex-
press energy dissipation due to the contact. Therefore, 
in the refined DEM, the spring constant can be de-
rived theoretically, which makes the method suitable 
for simulating large displacement behaviors such as 
failure and collapse.

2.2 Analytical parameters
(1) Spring constant of each spring
A spring is attached to each surface segment. There 
are two types of springs: restoring springs and contact 
springs. Each spring constant is taken to have the 
same value. The springs are set for both the normal 
and shear direction of the surface. The spring con-
stants per area, in both the normal and shear direc-
tions, are written as follows using the equilibrium of 
force for each pyramid (Fig. 1 (e)) composed of a 
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segment and the center of gravity for each element:

)1( 2ν−
= Ekn

, and  )1(2 ν+
= Eks

,              (1)

where E is Young’s modulus and ν is Poisson’s ratio 
for the element; l is the distance from the surface to 
the center of gravity.

(2) Spring constant between elements
In the refined DEM, individual components of the 
masonry structure shown in Fig. 2 (a) are modeled in 
a simple manner, as shown in Fig. 2 (b). The bricks 
themselves are modeled with rigid elements whereas 
the mortar joints between elements are modeled with 
multiple springs and dashpots. The size of one unit is 
the sum of the brick size and the mortar thickness. 
Each unit is modeled with one rigid element. The 
joints have zero thickness and are expressed by 
springs between the elements.

Two elements, A and B, are assumed to be con-
tinuous and connected to each other with mortar. 

Young’s moduli are given by EA and EB, and Poisson’s 
ratios by νA and νB for elements A and B. The distances 
from each center of gravity to each segment are lA and 
lB. For the mortar, Young’s modulus and Poisson’s ra-
tio are EM and νM, respectively, and tM is the mortar 
thickness. Assuming that the springs of elements A 
and B are connected in series, the spring constants be-
tween elements per area, kn and ks, are found to be
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In the case where elements A and B are continu-
ous and without mortar, the spring constants are writ-
ten as
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Figure 2.  Modeling of a masonry structure

 (a) Masonry structure (b) Analytical model

         

Figure 1.  Modeling of a spring and dashpot in the refined DEM

 (a) Segments (b) Multiple springs (c) Restoring spring (d) Contact spring and contact dashpot

(e) Pyramid for deriving the spring constant
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(3) Contact damping coefficient
If a segment of an element is in contact or in collision 
with another element with which the segment is not 
continuous via the restoring spring, a contact spring 
and dashpot are set between the elements. The contact 
dashpot is introduced to express the energy dissipa-
tion of the contact. The damping coefficient per area 
is calculated as follows:

navenn kmhc 2= ,  savess kmhc 2= , 

and  BBAAavem ρρ += ,    (4)

where hn and hs are the damping constants for the nor-
mal and shear directions, mave is the equivalent mass 
per area relevant to this contact, and ρA and ρB are the 
mass densities of elements A and B.

2.3 Modeling of failure phenomena
Let σ and τ be the normal stress vector and shear 
stress vector acting at the contact point, and let un and 
us be the relative displacement vectors in the normal 
and shear directions between the segments. Stresses σ 
and τ are expressed as

|| nnk u=σ  and  ssk u= .                           (5)

When the stresses acting on the spring reach 
their elastic limit, failure phenomena are expressed 
using the breakage of the restoring spring. The elastic 
limits are modeled using the criteria of tension, shear, 
and compression failure.

(1) Tension failure mode
When normal stress σ exceeds tensile strength ft, the 
restoring spring is assumed to be broken by tension 
failure. The yield function has the following form 
(Fig. 3):

tff −= σσ )(1 .                                       (6)

(2) Shear failure mode
For assessment of shear failure, the Coulomb friction 
envelope is used. The yield function has the following 
form (Fig. 3):

where c is the bond strength andφis the friction an-
gle. 

(3) Compression failure mode
For the compression failure mode, an ellipsoid cap 
model is used. The yield function has the following 
form that makes use of compressive strength fm and 
material model parameter Cs (Fig. 3):

222
3 ||)( ms fCf −+= σσ .                           (8)

Cs  is based on past research on masonry structures [8].
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Figure 3.  Modeling of failure phenomena

2.4 Nonlinearity of contact force 
When a segment of an element is not continuous, but 
in contact (or recontact) with another element, a con-
tact spring and contact dashpot are attached to each 
segment. The contact force is generated only while 
there is active compression force. The contact force in 
the shear direction is bounded by the friction limit. 
The friction limit is expressed by   

φσ tan|| = ,                                      (9)

whereφis the friction angle.

2.5 Equations of motion
(1) Translational motion of center of gravity
The forces acting on the center of gravity of an ele-
ment are the sum of the restoring and contact forces 
between the elements and external forces, such as 
gravitational force and inertial force due to an earth-
quake. The restoring or contact force by the spring 
between two certain elements in contact is obtained 
by multiplying the spring constant per area (Eq. (3)) 
by the relative displacement between the relevant ele-
ments and the area of the segment. The contact force 
by the dashpot between two certain elements in con-
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tact is obtained by multiplying the damping coeffi-
cient per area (Eq. (4)) by the relative velocity be-
tween the relevant elements and the area of the 
segment. The total sum of the restoring and contact 
force for a certain element is obtained by summing up 
the restoring or contact force by springs and dashpots 
for all elements with which the element of interest is 
in contact. For more details, see [7]. The equation of 
motion for translational motion is written as

+−−= )()()( ttmmtm g Fzgx ,                       (10)

where xg(t) is the displacement vector of the center of 
gravity of an element at time t, m is the mass of the 
element, g is the gravitational acceleration vector,    is 
the ground acceleration vector, and ΣF(t) is the sum 
of the restoring and contact force vectors at time t.

From Eq. (10), the acceleration of the center of 
gravity of an element is obtained, and the velocity and 
displacement are then obtained by integrating the ac-
celeration. Therefore, the coordinates of the center of 
gravity of an element can be traced.

(2) Rotational motion around the center of gravity
The angular velocity vector in an inertial coordinate 
system is obtained by solving the following Eulerian 
equation of motion:

×=×+ )()()()()()()( ttttttt FRrRII ,               (11)

where I is the tensor of the inertial moment, r(t) is the 
vector in the absolute coordinate system between the 
center of gravity and the point at which F(t) acts, and 
R(t) is the matrix representing the transformation 
from the absolute coordinate system to the inertial co-
ordinate system.

The vector from center of gravity xg(t) to arbi-
trary point xp(t), xgp(t), is obtained by integrating the 
velocity obtained in the following equation:

)())()(()( tttt gp
T

gp xRx ×= ,                          (12)

where ω(t) on the right-hand side is the angular veloc-
ity vector in the inertial coordinate system, obtained 
by solving Eq. (11).

The coordinates of arbitrary point xp(t) are ob-
tained as follows by using xgp(t) in Eq. (12):

)()()( ttt gpgp xxx += .                               (13)

The coordinates of the arbitrary point on the ele-
ment can be traced by solving Eqs. (11)-(13) step by 
step.

2.6 Stability condition of solution
In this study, the leap-frog method is applied as a 

time integration scheme to solve the equation of mo-
tion. In the leap-frog method, the stability condition 
of the solution is written as

nKmt /<Δ .                                      (14)

From Eqs. (2), (4), and (14), the stability condi-
tion for translational motion is determined by [9].

Et /)1( 22 νρ −≤Δ . (15)

3.Proposed method (Deformable DEM)
3.1 Basic concepts
This study proposes a new element model to consider 
the deformation of an element itself. In the new ele-
ment model (Fig. 4), an element is divided into two 
parts. An inner part (deformation part) considers de-
formation of the element itself, and an outer part 
(contact part) deals with contact between elements. 
The deformation part is modeled as an elastic FEM 
element. The stiffness matrix of an eight-node solid 
element is used to obtain the restoring force due to 
deformation. The contact part is assumed to move 
along the deformation part with a constant thickness. 
Then, the coordinates of the vertices of an element are 
determined by the coordinates of nodes of a FEM ele-
ment. In the new DEM, the behavior of each node is 
tracked step by step. The concept of the refined DEM 
is applied so as to consider the contact between ele-
ments. Then, a restoring spring is set between contin-
uous elements prior to mortar failure, and a contact 
spring and a contact dashpot are attached between el-
ements when they are in contact or recontact. It is de-
sirable that the thickness of the contact part is set to 
be as thin as possible, to obtain high accuracy.

In the new DEM, structural deformation is ex-
pressed by the sum of the deformation of elements 
and the contact between elements. Then, the forces 
acting on a node are the sum of external forces (e.g., 
gravity and inertia), restoring and contact forces be-
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tween elements, and reaction forces that oppose ele-
ment deformation. The coordinates of each node are 
obtained by solving the equation of motion for each 
node. Therefore, the behavior of the structure is traced 
by tracking the behaviors of each node, step by step.

 

 Deformation 
part 

Node 

Contact part 

Figure 4. New element model

3.2 Analytical parameters
(1) Contact part
The analytical parameters in the contact part are the 
spring constants of the restoring and contact springs 
and the damping constant of the contact dashpot.

The values used for the restoring and contact 
springs are the same as for the refined DEM. The 
spring constants of the spring between elements, A 
and B, are written as follows by referring to Eq. (2):
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where rA and rB are the thicknesses of the contact parts 
in elements A and B.

The damping constant is determined by substi-
tuting      nk   and   sk   into Eq. (4).

(2) Deformation part
A stiffness matrix for the 3D FEM is introduced in the 
deformation part. This study applies an eight-node 
hexahedral element. Letting K be the element stiff-
ness matrix, u(t) be the relative displacement vector 
at time t, and freact(t) be the vector of reaction force 
against deformation, freact(t) is then written as 

Kuf =)(treact .                                     (17)

3.3 Equations of motion
(1) Translational motion of the center of gravity and 
rotational motion around the center of gravity
As with the refined DEM, the coordinates of the cen-

ter of gravity and rotation around the center of gravity 
are obtained by solving two equations: Newton’s 
equation for translational motion and Euler’s equation 
for rotational motion around a center of gravity. Then, 
the coordinate axes of the element coordinate system 
are updated. Reaction force against deformation is not 
considered at this point.

(2) Motion of the node of deformation 
The forces acting on each node are the sum of exter-
nal forces, restoring and contact forces between ele-
ments, and reaction force against deformation. The 
coordinates of each node are obtained by solving the 
equations of motion.

Let xin and min be the relative displacement vector 
and the mass of a node. The subscript “in” indicates 
“inner node” since it is the node of the inner part that 
considers deformation of the element. The equation of 
motion is

++−−= )()()()( tttmmtm deformcontactinininin ffzgx
,  

(18)

where fcontact(t) is the sum of restoring and contact 
forces acting on a node at time t, and fdeform(t) is the re-
action forces against deformation acting on a node. 

The acceleration of a node is determined by solv-
ing the equation of motion of a node. The coordinates 
of a node at the next time step are obtained by inte-
grating the acceleration. The coordinates of a vertex 
are updated by considering the thickness of the part in 
contact. Then, the forces acting on a node at the next 
time step are also updated. In this way, the behavior 
of a structure can be traced by calculating the equa-
tion of motion step by step.

4.Numerical analysis
4.1 Verification of the proposed method
(1) Basic concept
This section investigates whether the proposed meth-
od can adequately model the deformation of individu-
al elements. A vertical load is applied to an element, 
and the horizontal displacement is computed to con-
firm the appropriate simulation of Poisson’s effect. 
The results are compared with the results obtained us-
ing the FEM.
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(2) Analytical model
Figure 5 illustrates analytical models of the proposed 
method and the FEM. In the proposed method, a high-
density rigid element (weight W) was placed on a de-
formable element to apply the vertical load. The ele-
ment is a cube measuring 0.1 m on each side and the 
thickness of the contact part of the element is 
0.001 m.

In the FEM, a cube also measuring 0.1 m on 
each side was used. A load of W/4 was applied at each 
node on the upper surface of the element.

The displacement of point A (Fig. 5) in the x-di-
rection was computed for both cases to compare the 
calculated displacement due to Poisson’s effect.

 
(a) Proposed method          (b) FEM 

 

z    y 
    x 

0.1m 

0.1m 
0.1m

0.1m 

High-
density 
element

 

W/4 W/4

W/4 W/4

Point A 
Deformable 

element 
FEM 

 element 

Figure 5. Analytical model for verification

(3) Material properties
Table 1 presents the material properties used in the 
simulations. The density and Young’s modulus were 
chosen on the basis of experimental results of adobe 
bricks obtained by Ghannad et al. [10] The simulation 
in this analysis is elastic, so the strengths of mortar 
(i.e., the tensile, shear, and compressive strengths) 
were set to have a value that was large enough not to 
fail. Poisson’s ratio in Case 1 is 0.25, and in Case 2, it 
is 0.40.

Table 1. Material properties
Brick Mortar Rigid element

Density p (kg/m3) 1.8×103 1.8×103 2.0×104

Young’s modulus E 
(N/m2)

9.8×107

Poisson’s ratio v 0.25 (Case 1), 0.40 (Case 2)

(4) Results
The displacement of point A (Fig. 5) was measured 
when the load in the vertical direction acted on the el-

ement. Table 2 compares the results using the pro-
posed method and the FEM.

In Table 2, the results obtained using the pro-
posed method are found to agree well with the results 
of the FEM. Figure 6 shows the deformation of the 
element and the displacement in the x-direction.

It is confirmed that Poisson’s effect, which can-
not be modeled by the existing DEM, was successful-
ly expressed by the proposed method. It is also con-
firmed that the deformation computed by the proposed 
method agreed well with the FEM. In masonry build-
ings, bricks support the vertical gravity load of the 
bricks stacked above, and this vertical gravity load 
causes deformation in the horizontal direction due to 
Poisson’s effect. In the following sections, the effect 
of this Poisson’s effect is examined by comparing the 
results of the proposed method and the refined DEM.

Table 2 Analysis results
Proposed method FEM

Case 1 ( v = 0.25) 6.804×10-6 (m) 6.802×10-6 (m)
Case 2 ( v = 0.40) 9.280×10-6 (m) 9.142×10-6 (m)

 
 x 

z 

Figure 6. Result of this analysis (Poisson’s ratio 0.40)

4.2 Seismic behavior analysis of a masonry wall
(1) Basic concept 
Seismic analyses using the proposed method and the 
refined DEM were conducted by modeling the propa-
gation of a ground motion source into a simple ma-
sonry wall. From these analyses, the effect of consid-
ering deformation is investigated.

(2) Analytical model
Figure 7 illustrates the masonry wall models analyzed 
in this section. The wall has a width of 1.2 m in the x-
direction, a depth of 0.2 m in the y-direction, and a 
height of 1.2 m in the z-direction. The x-direction is 
regarded as the in-plate direction, and the y-direction 
is regarded as the out-of-plate direction.

Two types of models were applied in these anal-
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yses. Figure 7 (a) is a straight joint wall model con-
sisting of straight joints in both the horizontal and 
vertical directions. Figure 7 (b) is referred to as an 
English bond wall model. The joint is straight in the 
horizontal direction, but not in the vertical direction. 
The straight joint wall model consists of cubic ele-
ments with edges of 0.2 m long. The English bond 
wall model consists of two types of elements: cubic 
elements with edges of 0.2 m long, and rectangular-
parallelepiped elements of 0.1 m×0.2 m×0.2 m.

 
 

            
 

(a) Straight joint wall 
 

 
 
 

       (b) English bond wall 

 y   z 
          x 

1.2m 

1.2m 0.2m

Element A 

Element B 

x 

z 

Figure 7. Analytical model

(2) Material properties
Table 3 shows the material properties of the bricks 
and mortar. The strengths of the mortar are based on 
field experimental results obtained during a survey of 
the damage resulting from the 2003 Bam earthquake 
[11]. 

Table 3. Material properties
Brick Mortar

Density p (kg/m3) 1.8×103 1.8×103

Young’s modulus E (N/m2) 9.8×106 9.8×106

Poisson’s ratio v 0.25 0.25
Tensile strength (N/m2) - 4.6×103

Shear strength (N/m2) - 2.9×103

Friction angle - 32°
Compressive strength (N/m2) - 4.9×105

(3) Input ground motion
The Building and Housing Research Center in Iran 
recorded the unique main shock of the Bam earth-
quake [12]. The acceleration of the horizontal compo-
nent of the earthquake is oriented in the in-plate direc-
tion (Fig. 8).

 
Figure 8. Input ground motion

4.3 Results
The relative displacements of the center of gravity of 
element A and B (Fig. 7) are shown in Figs. 9 and 10. 
The relative displacements from 0.0 to 1.5 s are used 
to compare the results of the refined DEM and the 
proposed method. In addition, the seismic behaviors 
of structures obtained by the two methods are com-
pared. The results of the refined DEM are referred to 
as “RIGID” and the results of the proposed method 
are referred as “DEFORM”.

(1) History of the relative displacement
Figures 9 and 10 show the relative displacements 
from 0.0 to 1.5 s. Before initializing ground motion, a 
self-weight was applied to the structures. The ground 
motion was instigated after the structures reached a 
stable condition under their own weight.

a) Straight joint wall model
Figures 9 (a), (b), and (c) illustrate the relative dis-
placements in the x-, y-, and z-directions, respectively. 
From Fig. 9 (a), the amplitude obtained using the re-
fined DEM (RIGID) is nearly 0.0 m and the ampli-
tude obtained using the proposed method (DEFORM) 
is about 
-0.0002 m from 0.0 to 0.3 s. These analyses were con-
ducted after initializing the self-weight, so that the 
initial difference between both methods is due to 
Poisson’s effect under this self-weight. In Fig. 9 (b), 
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the displacement is observed to be nearly 0.0 s in 
RIGID because the refined DEM does not consider 
Poisson’s effect. In comparison, Poisson’s effect is 
observed using the DEFORM method. The differenc-
es in Fig. 9 (a), (b), and (c) are due to the deformation 
caused by Poisson’s effect.

b) English bond wall model
Figure 10 shows the results of an English bond wall 
model. Like the straight joint wall model, the differ-
ence from 0.0 to 0.3 s is due to self-weighted Pois-
son’s effect. As shown in Fig. 10 (b), the displace-
ment in RIGID is 0.0 m, whereas Poisson’s effect is 
observed in DEFORM. Therefore, by investigating 
the differences in the two methods, the proposed 
method is confirmed to express Poisson’s effect by 
considering the deformation of the element.

(2) Seismic behavior
The seismic behavior of the structure at 4.0, 4.5, 5.0, 
5.5, and 6.0 s is compared in this section.

a) Straight joint wall model
As shown in Fig. 11, failure occurs at (a) and the 
structure collapses at (c) in RIGID. In DEFORM, the 
structure collapses later than in RIGID.

This model has straight joints, so the failure 
spreads easily. In RIGID, compressive force due to 
Poisson’s effect by the self-weight of horizontally ad-
jacent elements cannot be applied because the defor-

mation of elements is ignored. As a result, the mod-
eled structure collapses easily. On the other hand, in 
DEFORM, compressive forces do act between ele-
ments because of Poisson’s effect. These compressive 
forces work as a prestress, so that the structure is 
stronger and collapses later than in RIGID.

b) English bond wall model
As shown in Fig. 12, a crack is generated with a diag-
onal orientation but the structure does not collapse in 
RIGID. This is because the joints of an English bond 
wall are complicated and they enhance the interlock-
ing between elements. In DEFORM, a large crack is 
generated at (a) and the upper part collapses at (b). 
The elements deform in DEFORM, so that the inter-
locking of joints is weaker than in RIGID.

Compared with other models, the English bond 
wall model is strongest in RIGID. The straight joint 
wall model collapses easily due to the straight joint. 
However, the English bond wall model has compli-
cated joints and does not readily collapse. In DE-
FORM, both models collapse, but the number of fall-
en bricks is smaller in the English bond wall model 
than in the straight joint wall model. 

5.Conclusions
In this study, we propose a distinct element method 
that considers element deformability. The deformation 
of an element can be expressed by dividing the ele-
ment into a deformation part and a contact part.

 
       (a) x-direction                   (b) y-direction                        (c) z-direction 

Figure 9.  History of relative displacement (straight joint wall model)

 

 
       (a) x-direction                   (b) y-direction                        (c) z-direction 

Figure 10.  History of relative displacement (English bond wall model)
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Horizontal displacement against the vertical load 
is calculated using the proposed method. The results 
obtained using the proposed method agree well with 
the results of the FEM. The proposed method is con-
firmed to correctly express Poisson’s effect.

The seismic behaviors of simple masonry walls 
were simulated using the proposed method and the re-
fined DEM. The effect of considering deformation 
was investigated by comparing the results of both 
methods. Ground motion was input in the in-plane di-
rection. In the refined DEM, compression force due to 
self-weight between horizontally adjacent elements 
cannot be expressed, which means that a straight joint 
wall model collapses easily. In the proposed method, 
compressive forces are generated between horizontal-
ly adjacent elements because the method can consider 
Poisson’s effect. The structure collapsed later, which 
is modeled better in the proposed method than in the 
refined DEM owing to these compressive forces. An 
English bond wall model collapses less easily than a 
straight joint model because of the interlocking effect 
due to the complexity of the joints. In the refined 

DEM, the effect of interlocking is clearly seen; how-
ever, in the proposed method, the effect is weaker as a 
result of element deformation. 

When ground motion was input in the out-of-
plane direction, the results of the two methods were 
almost the same, because there is only one element in 
the out-of-plane direction and the influence of Pois-
son’s effect is small. In real masonry buildings, the 
critical failure pattern is out-of-plane failure. The 
seismic behavior of masonry buildings, however, is 
very complicated since if one wall vibrates in the out-
of-plane direction, the orthogonal wall vibrates in the 
in-plane direction. Therefore, the authors would like 
to investigate the influence of element deformability 
by analysis through the simulation of buildings in a 
further study.

Since the validity of the proposed method has 
not been confirmed by the experiment, the authors 
would like to compare the analytical results with an 
experiment to examine the validity of the proposed 
method in a future study. 

                      
 (a) 4.0 s                    (b) 4.5 s                          (c) 5.0 s 

 

          
(d) 5.5 s                                       (e) 6.0 s 

Figure 11. Deformation form (straight joint wall model)

 

                              
(a) 4.0 s                      (b) 4.5 s                            (c) 5.0 s 

 

                         
(d) 5.5 s                                      (e) 6.0 s 

Figure 12. Deformation form (English bond wall model)
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