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1. Introduction

The principal cause of death due to earthquakes is the 
collapse of buildings, which has accounted for 75% of 
earthquake fatalities over the last century [1]. In par-
ticular, the collapse of masonry buildings has killed 
a large number of victims [2]. An adobe building is 
a masonry structure made of sun-dried bricks (adobe 
bricks) and mortar and has particularly low earth-
quake resistance. Such structures collapse even at low 
intensities of ground motion and collapse rapidly at 
high intensities. EMS98 is a macroseismic scale pro-

posed by the European Seismological Commission in 
1998, which was modified from the MSK scale (1964) 
to be applicable to various modern structures [3]. 
Similar to the MSK scale, EMS98 categorizes the vul-
nerability classes of buildings from A to F, and adobe 
buildings are classified as vulnerability class A, which 
is the weakest type of building. EMS98 also classifies 
damage to buildings into five grades from G1 to G5 
(G1: negligible to slight damage, G2: moderate dam-
age, G3: substantial to heavy damage, G4: very heavy 
damage, G5: destruction). The relationship between 
the damage grade of adobe buildings and the EMS98 
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intensity is defined as follows. At intensity V, a few 
(0-20%) buildings have grade G1 damage. At inten-
sity VI, a few adobe buildings have grade G2 damage 
and many (20-60%) have grade G1 damage. At inten-
sity VII, a few adobe buildings have grade G4 damage 
and many have grade G3 damage. At intensity VIII, a 
few adobe buildings have grade G5 damage and many 
have grade G4 damage. At intensity IX, the damage 
to many adobe buildings is grade G5, and at intensity 
X, the damage to most (60-100%) adobe buildings is 
grade G5.

Therefore, it is necessary to improve the earthquake 
resistance of these primarily weak masonry build-
ings to reduce the number of casualties. However, 
knowledge is still limited as to how the failure begins 
and proceeds, how buildings collapse, and how earth-
quake resistance can effectively be improved. With 
this background, a series of seismic behaviors—from 
elastic to failure to collapse behaviors—is simulated 
using a refined version of the distinct element method 
[4].

Among numerical simulation methods, the finite ele-
ment method (FEM) is the most common for the anal-
ysis of a continuum [5]. It can deal with both elastic 
and plastic behaviors, but it has difficulty in solving 
failure and collapse phenomena since it is based on 
the mechanics of the continuum and uses a continuous 
shape function. Ghannad et al. [6] conducted seismic 
simulation of typical Iranian masonry buildings using 
the FEM, and assessed the initiation of cracks from 
stress distributions. The crack pattern obtained by the 
analysis was in good agreement with actual crack oc-
currence during the Bam earthquake. Cao et al. [7] 
computed the earthquake response of adobe structures 
with a joint element that expresses the separation and 
sliding between bricks. Gambarotta and Lagomarsino 
[8] and Lourenco et al. [9] introduced joint elements 
at the interface as well as inside each brick, and simu-
lated cracks inside the bricks. They confirmed the 
validity of their simulation by comparing the simula-
tion results with the experimental results. In this way, 
the FEM can simulate discontinuous phenomena such 
as cracking, separation, and sliding through the use of 
joint elements. It is still difficult, however, to simulate 
total collapse behavior employing the FEM.

A method based on discontinuum modeling is more 
suitable for analyzing failure and collapse phenom-
ena. Examples of numerical methods for a discon-
tinuum are the distinct element method (DEM) [10], 
discontinuous deformation analysis (DDA) [11], and 
the rigid-body spring method (RBSM) [12]. However, 
these methods have disadvantages. In the DEM, a 
way of determining the spring constant from the ma-
terial properties has not been established, and the val-
ues need to be quantified experimentally. Therefore, 
the reliability of the results is not high. For example, 
Alexandris et al. [13] adopted the DEM to investigate 
the crack patterns and collapse mechanism of stone 
masonry structures subjected to severe earthquake ex-
citations. They calibrated the analytical parameters by 
comparing the numerical prediction of the response 
with experimental results. The calibrated parameters 
depend on the scale of the structures, so they do not 
always give a reliable solution if the calibrated pa-
rameters are applied to models of different scale. The 
disadvantage of DDA is that the formulation is com-
plicated since inequality equations need to be solved. 
Therefore, application to a three-dimensional problem 
is considered difficult even though it is possible in 
theory. The RBSM is not suitable for large displace-
ment problems since it does not consider the recontact 
of an element with neighboring elements other than 
the element with which contact is initially set.

As an alternative, the present paper uses a refined 
version of distinct element method, which simulates 
three-dimensional elastic, failure, and collapse behav-
iors [4]. The method models the structure as an as-
sembly of rigid elements and cannot handle Poisson’s 
effect like the DEM, but unlike the DEM, interaction 
between elements is modeled by multiple springs and 
multiple dashpots attached to the surfaces of the ele-
ments. The spring constant of each spring is theoreti-
cally determinable.

Using this method, this study simulates the seismic 
behavior of simplified adobe buildings in Iran. Models 
with a flat roof and models with a vault roof are con-
sidered, and their failure propagation mechanisms are 
examined and compared. The influence of the direction 
of the input ground motion on the process of failure 
propagation is also investigated. The outcomes of the 
simulation are compared with examples from past 
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earthquakes to confirm the reliability of the simulation. 
Moreover, this study investigates the effectiveness of 
reinforcement measures. Through a damage survey, it 
is pointed out that poor-quality mortar, weak wall-to-
wall connection, and lack of out-of-plane resistance of 
walls are important issues in considering the seismic 
vulnerability of rural houses in Iran [14]. Therefore, 
this study considers three reinforcement measures. 
One is increasing the mortar strength, which increases 
brick-to-brick connections and wall-to-wall connec-
tions as a result. The second is increasing the thickness 
of the bearing walls, which increases their out-of-plane 
resistance. The third is introducing wooden columns 
and beams, which increases the out-of-plane resistance 
of walls and wall-to-wall connections. The effects of 
roof type, direction of ground motion, and reinforce-
ment measures on failure propagation are investigated 
in terms of tensile cracking, building deformation, and 
scattering of bricks determined by simulation.

2. Analytical Method

2.1 Basic concept
This study employs a refined version of the DEM to 
simulate a series of structural dynamic behaviors from 
elastic to failure to collapse phenomena. A structure is 
modeled as an assembly of rigid elements, and inter-
action between the elements is modeled with multiple 
springs and multiple dashpots that are attached to the 
surfaces of the elements. The elements are rigid, but 
the method allows the simulation of structural defor-
mation by permitting penetration between elements.

Figure 1 (a) shows a spring for computing the restoring 
force (restoring spring), which models the elasticity of 
elements. The restoring spring is set between continu-
ous elements. Structural failure is modeled as break-
age of the restoring spring, at which time the restoring 
spring is replaced with a contact spring and a contact 
dashpot (Fig. 1 (b) ). Figure 1 (b) shows the spring and 
dashpot for computing the contact force (contact spring 
and dashpot) and modeling the contact, separation, and 
recontact between elements. The dashpots are intro-
duced to express energy dissipation due to the contact. 
Structural collapse behavior is obtained using these 
springs and dashpots. The elements shown in Figs. 1 (a) 
and (b) are rectangular parallelepipeds, but the method 
does not limit the geometry of the elements.

The surface of an element is divided into small seg-
ments as shown in Fig. 1 (c). The segment in the fig-
ure is rectangular, but the method does not limit the 
geometry of the segment. The black points indicate 
the representative point of each segment, and the rela-
tive displacement or contact displacement between 
elements is computed for these points. Such points 
are referred to as contact points or master points in 
this study. One restoring spring and one combination 
of contact spring and dashpot are attached to one seg-
ment (Fig. 1 (d) ) at each of the representative points 
in Fig. 1 (c). The spring constant for each segment is 
derived on the basis of the stress-strain relationship of 
the material and the segment area.

Forces acting on each element are obtained by sum-
ming the restoring force, contact force, and other ex-
ternal forces such as the gravitational force and inertial 
force of an earthquake. The behavior of an element 
consists of the translational behavior of the center of 
gravity and the rotational behavior around the center 
of gravity. The translational and rotational behaviors of 
each element are computed explicitly by solving New-
ton’s law of motion and Euler’s equation of motion.

(a) Restoring spring

(b) Contact spring and dashpot

(c) Segments and contact points

(d) Multiple springs and multiple dashpots

Fig. 1 Basic concept of the analysis method
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2.2 Spring constant of each element
As described in Section 2.1, there are two types of 
springs, namely restoring and contact springs. It is as-
sumed that the spring constants of the restoring spring 
and those of the contact springs are the same. It is 
considered that each segment has its own spring.

Springs are set for both the normal and shear (tan-
gential) directions of the surface. Let us denote the 
area of the segment as dA and the relative (contact) 
displacement at the surface segment as un and us. The 
subscripts n an s indicate the values in the normal and 
shear directions, respectively. The spring constants 
per area in the normal and shear directions, kn and ks, 
are obtained as follows [4].
                                                                   

 (1)
where E is Young’s modulus, v is Poisson’s ratio, and     
   is the distance from the surface at which the spring 
is connected to the center of gravity.

2.3 Modeling of elastic behavior
It is assumed that two elements, A and B, are continu-
ous, and that a contact point of element A is continu-
ous with element B as shown in Fig. 2 (a). The con-
tact point of element A is the “master point” and the 
contact point of element B is the “slave point.” The 
slave point does not have to be the center of the seg-
ment. The combinations of continuous elements for 
each segment are determined in the initial stage of the 
computation.

Let GA and GB be the centers of gravity of elements A 
and B, respectively. Let       be the distance from GA 
to the surface of element A in contact. Let        be the 
distance from GB to the surface of element B in con-
tact. Let EA and EB be Young’s moduli and vA and vB 
be Poisson’s ratios of elements A and B.

It is assumed that both elements have their own spring 
constants in the normal and shear directions based on 
their material properties as shown in Fig. 1 (b). The 
spring constants per area for each element are ob-
tained from Eq. (1). Assuming that these springs are 
connected in series, the spring constants between ele-
ments per area,       and       , are shown in Fig. 2 (b).

  (2)
The spring constant between elements connected by 
mortar is also obtained in a similar manner. For exam-
ple, in masonry structures, bricks are often connected 
with mortar. In this case, the spring constant per area 
between elements (bricks) is obtained as

  

  (3)
where tM is the mortar thickness, EM is Young’s modu-
lus, and vM is Poisson’s ratio of the mortar. The nor-
mal direction of forces is the direction perpendicular 
to the surface of the master point of element A.

Let σ and τ be the normal and shear stresses acting 
at the contact point, and let un and us be the relative 
displacements between the adjacent master and slave 
points in the normal and shear directions. The relation 
between traction (σ, τ) and relative displacement (un, 
us) is then written as

(4)
It is noted that the method cannot handle Poisson’s 
effect since it considers the contact between two ele-
ments.
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2.4 Modeling of failure phenomena
The elastic behavior of structures is demonstrated by 
the linear multiple restoring springs between con-
tinuous elements until the restoring force of a spring 
reaches its elastic limit. The elastic limits are modeled 
using the criteria of tension, shear, and compression 
failure. When a spring reaches one of these limits, it 
is judged that failure has occurred at that segment of 
the spring. After the failure, the restoring spring is 
replaced with a contact spring and dashpot at this seg-
ment. The method can trace the expansion of failure 
between elements. The three failure modes—namely, 
tension, shear, and compression failure modes—are 
defined based on the Mohr-Coulomb cap model as 
follows.
(1) Tension failure mode
For the tension failure mode, the parameter consid-
ered is tensile strength ft. When the normal stress of 
spring σ exceeds the tensile strength, the restoring 
spring is assumed to be broken by the tension failure. 
The yield function has the following form (Fig. 3).

(5)
The normal restoring stress cannot exceed this limit.
(2) Shear failure mode
For the shear failure mode, the Coulomb friction en-
velope is used. The parameters considered are bond 
strength c and friction angle ϕ. The yield function has 
the following form (Fig. 3).

(6)
The shear restoring stress cannot exceed this limit.
(3) Compression failure mode
For the compression mode, an ellipsoid cap model is 
used. The yield function has the following form (Fig. 3).

(7)
where fm is the compressive strength and Cs is the 
material model parameter. Cs = 9 is adopted on the 
basis of past research [15]. When the restoring stress 
exceeds this limit, both the normal and shear restoring 
stresses are reduced in the same proportion to meet 
this limit.

In real structures, failure occurs not only at the mor-
tar, but also inside bricks and at the interface between 
brick and mortar. However, in this study, it is assumed 
that failure does not occur inside bricks but at the 

interface between bricks, and we do not discriminate 
failure at the mortar from failure at the interface be-
tween brick and mortar. The restoring spring between 
elements is linear until any failure occurs. In tension, 
linear tensile reaction force acts until it reaches the 
tensile strength. After tensile failure, no tensile reac-
tion force acts between these elements until they are 
in contact again. In compression, the linear compres-
sive reaction force acts until it reaches the compres-
sion strength, and the compressive reaction force 
then obeys the Mohr-Coulomb cap model. During the 
unloading process after the failure, the compressive 
strength decreases linearly with the initial stiffness, 
and it becomes 0 when elements are separated. The 
shear reaction force is also linear until it reaches the 
shear strength, and it then obeys the Mohr-Coulomb 
cap model. During the unloading process after the 
failure, the shear strength decreases linearly with the 
initial stiffness and obeys the limit of Eq. (6). Since 
the face of the elements is divided into many seg-
ments and each segment has its own spring, these 
springs gradually break during loading.

2.5   Modeling of contact and recontact between 
elements

If a segment of an element is in contact with another 
element with which the segment is not continuous via 
the restoring spring, the contact spring and dashpot 
generate contact force between the elements. Contact 
between a segment and the surface of another element 
is detected at each time step for all segments that are 
not continuous with other elements via a restoring 
spring.

Figure 4 (a) illustrates the situation where a contact 
point of element A is in contact with discontinuous el-
ement B, and Fig. 4 (b) shows the contact spring and 
dashpots between these elements.
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The spring constant and the contact forces in the nor-
mal and shear directions are calculated in the same 
manner as for the restoring force. The differences 
from the case for the restoring force are that the con-
tact force is generated only while the compression 
force acts and that the shear force is bounded by the 
friction limit.

(8)
where ϕ is the friction angle.
The dashpot is introduced to express the energy dis-
sipation of the contact. The damping coefficient per 
area is calculated as follows.

(9)
where hn and hs are the damping constants for the nor-
mal and shear directions. mave is the equivalent mass 
per area relevant to this contact. In this study, mave is 
calculated as

(10)
where        and        are the mass densities of ele-
ments A and B.

The damping constants should be evaluated according 
to the properties of the elements, but this study adopts 
critical damping (hn = hs = 1.0) by considering the fact 
that most structural components tend not to bounce 
greatly and that their oscillation tends to quickly dis-
appear when they collide with each other.

2.6   Restoring and contact forces acting at each 
element

The restoring and contact forces are calculated at all 
segments for both elements A and B. The restoring 

and contact forces acting at each point are obtained by 
considering the area of the master point. Assuming dA 
is the area of the master point, the effective area can 
be half the segment area dA to avoid double counting 
of the contact force, since the contact points of both 
elements A and B can be the master points. Therefore, 
assuming that dA/2 is the effective area of the master 
point, the spring constants and damping coefficients 
are
                  
                  

(11)
In consideration of this, the size of the segments 
should be small and the same for elements A and B.
Finally, the spring forces (en, es) and damping forces 
(dn, ds) in the normal and shear directions are written 
as
                  
                  

(12)
where Δun and Δus are the increments of relative dis-
placement and Δt is the time interval. The variables 
written in bold face are vectors.

2.7 Structural damping
In this study, structural damping that expresses energy 
dissipation in structural vibration is considered. This 
differs from energy dissipation of the contact ex-
pressed by damping constants cn and cs.

Damping constant c is introduced as mass-proportion-
al damping as

(13)
where α is a variable defining the damping constant. α 
can be calculated as

(14)
where ωi is the angular frequency and hi is the corre-
sponding damping constant.
Mass-proportional damping is adopted since the meth-
od solves the equation of motion for each element 
and mass-proportional damping is easily applicable. 
The dashpot attached between contact elements is a 
stiffness-proportional damping. We plan to investigate 
an appropriate model of damping in a future study.

2.8 Equations of motion
Equations of motion can be constructed using the re-
storing and contact forces and other external forces. 
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The motion of each element is obtained by solving the 
two equations of motion. One is the equation for the 
translational motion of the center of gravity, and the 
other is the equation for the rotational motion around 
the center of gravity.
(1)   Translational motion of the center of gravity
The forces acting on an element are the sum of exter-
nal forces, such as the gravitational force and inertial 
force due to an earthquake, and the restoring and con-
tact forces between elements. The equation of motion 
for the translational motion is

(15)
where xg(t) is the displacement vector of the center of 
gravity of an element at time t, m is the mass of the 
element, c is the damping constant of the element, g is 
the gravitational acceleration vector,    is the ground 
acceleration vector at time t, and ΣF(t) is the sum 
of the restoring and contact force vectors at time t.
(2)   Rotational motion around the center of gravity
First, the angular velocity vector ω(t) is obtained by 
solving the following Euler equation of motion.

(16)
Here, I is the tensor of the moment of inertia, r(t) is 
the vector between the center of gravity and the point 
where force F(t) is applied. R(t) is the matrix repre-
senting the transformation from the absolute coordi-
nate system to the inertial frame of reference.

The vector from center of gravity xg(t) to arbitrary 
point xp(t) in an element, xgp(t), is obtained by solving 
the following differential equation using the angular 
velocity vector.

(17)
where ω(t) is the angular velocity vector in the iner-
tial frame of reference obtained by solving Eq.  (16).

The coordinates of point xp(t) are then obtained as fol-
lows.

(18)
In this study, Eqs. (15) – (18) are solved explicitly us-
ing the central difference scheme.

2.9 Critical time interval
Since the equations of motion are solved explicitly, 

the solution is conditionally stable [16]. The follow-
ing inequality is used to determine the time interval 
for the computation.

(19)
The term on the right hand side of Eq. (19) is obtained 
for all segments of all elements, and the time interval 
is determined. If the solution is unstable using this 
time step, a smaller value is used until stability is at-
tained.

3. Analysis Outline

3.1 Modeling of bricks and mortar
In this study, individual components of the masonry 
structure shown in Fig. 5 (a)  (i.e., brick and mortar 
joints) are modeled in a simple manner as shown in 
Fig. 5 (b). The bricks are modeled with rigid elements 
and the mortar joint between elements is modeled 
with multiple springs and multiple dashpots. The size 
of one element is the sum of the brick size and the 
thickness of mortar together. The multiple springs and 
multiple dashpots interact with the surfaces of adja-
cent elements.

The modeling in this study is three-dimensional, 
and the elements are modeled with rigid rectangular 
parallelepipeds and hexahedrons. Faces surrounding 
the elements are divided into segments. The interval 
between contact points of neighboring segments is set 
to a quarter of the shortest edge length according to 
a past study [4]. The method was verified through a 
comparison with the experimental results of monoton-
ic loading and the analytical results of free vibration 
by the FEM [4]. Verification by comparison with cy-
clic loading and shaking table tests is very important 
and comprises one of our future plans. The dynamic 
failure patterns and scattering of elements, which will 
be shown later, are numerical solutions based on the 
assumptions shown in the previous section. Moreover, 
adobe brick is a very brittle material compared to oth-
er masonry elements such as burnt brick, stone, and 
concrete block, and the adobe bricks themselves frac-
ture during earthquakes. However, due to the limita-
tion of the analytical method, we do not model failure 
inside such bricks. Therefore, the solution focuses on 
structures where mortar failure is dominant and brick 
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failure is negligible. In this respect, the method may 
not be appropriate for structures where failure inside 
the bricks occurs with high probability. Modeling 
of failure of the brick itself is also one of our future 
plans.

3.2 Analytical models
Figure 6 illustrates the two masonry models analyzed 
in this study. One has a flat roof made of wooden 
beams, and the other has a vault roof made of adobe 
bricks. The directions (x, y, z) are also shown in Fig. 
6. In each model, the walls facing the y direction sup-
port the roof; therefore, these walls are referred to as 
bearing walls and the other two walls are referred to 
as nonbearing walls. The basement is modeled by a 
fixed element (not shown in the figure) and the model 
is placed on the basement.
(1) Flat roof model
The flat roof model has two bearing walls, two non-
bearing walls, and a flat roof. The external width of 
the building is 5.4 m × 3.4 m, and the internal width 
is 5.0 m × 3.0 m. The height of the walls is 2.4 m. The 
thickness of walls is 0.2 m. The walls are composed 
of bricks with dimensions of 0.2 m × 0.1 cm × 0.1 
m. There are mortar joints with a thickness of 0.01 
m between the bricks. Bricks are stacked according 
to the English bond model. The connections between 
walls and their perpendicular walls are constructed by 
mortar and bricks stacked with a shift of half the brick 
length in alternating layers.

One of the bearing walls has a door opening and a 
window opening. The size of the door is 1.2 m (width) 
× 2.0 m (height). The size of the window is 1.0 m × 1.0 
m, and the height of the lower side of the window is 1.0 
m. There are wooden beams above the openings that 
support the elements above the openings. The dimen-
sions of the beams above the openings are 0.2 m × 
0.1 m × 1.4 m (length). These beams are divided into 

elements of 0.2-m length to express their deformation 
and separation.
The roof consists of 27 beams that run in the y direc-
tion. The dimensions of the beams are 0.2 m × 0.2 m 
× 3.4 m (length). These roof beams are also divided 
into elements of 0.2-m length to express their defor-
mation and separation. The roof beams rest on the 
walls and there are mortar joints between the beams 
and walls. Wooden beams are also modeled with 
rigid elements in the same manner as for the bricks. 
The conjunction between wooden elements has the 
strength of wood.

(2) Vault roof model
The vault roof model has two bearing walls, two non-
bearing walls, and a vault roof. Modeling lower than 
2.4 m is the same as that for the flat roof model.

The roof has a semicircular profile with a radius of 
1.5 m. The dimensions of the bricks for the walls are 
basically the same as those of the flat roof model, but 
if the brick is adjoining the roof, it is then cut to make 
the wall semicircular. The vault roof has a thickness 
of 0.2 m and is divided into bricks having a section 
area of 0.2 m × 0.2 m in the radial direction and a 
length of close to 0.2 m in the tangential direction.

3.3 Analytical cases
(1) Mortar strength
Kiyono et al. conducted a field experiment to measure 
the mortar strength of a damaged adobe building dur-
ing a reconnaissance survey of the damage resulting 
from the Bam earthquake in Iran [17]. The results are 
shown in Table 1 and are referred to as the results for 
weak mortar in this study.

Ghannand et al. conducted a laboratory experiment to 
measure the strength of the adobe bricks used in rural 
regions in Iran [6]. The results are shown in Table 1 

Brick
Mortar joint

     
(a) Masonry structure (b) Analytical model
Fig. 5 Analytical modeling of masonry structures
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Fig. 6 Masonry models
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and are referred to as the results for normal mortar in 
this study.

Since the compression strength was not measured for 
weak mortar [17], the value for normal mortar is used. 
In addition, since the friction angle was not given for 
normal mortar [6], the value for weak mortar is used. 
The outcome of the simulation does not depend on 
these values since all models only suffered tensile 
failure in this study as explained later.

For comparison, the mortar strength of bricks used in 
Europe measured by Marzahn is given in Table 1 and 
is referred to as the strength of strong mortar in this 
study [18].

The results show that the mortar used in Europe is 
much stronger than that used in Iran, and that build-
ings damaged during the Bam earthquake had espe-
cially weak mortar strength. It is unrealistic to apply 
strong mortar to weak adobe bricks, but this case is 
chosen to investigate the effect of mortar strength.

The variation in the mortar strength of adobe build-
ings may be large, but this study conducted a deter-
ministic analysis without considering variation in 
properties. We discuss the effect of mortar strength 
by simply comparing the results for three different 
mortar strengths. Failure of the brick itself is ignored 
considering that the most failure occurs at the mortar 
conjunction.

Wooden columns and beams are divided into many 
elements to express deformation and breakage.
The breakage is modeled for the mortar listed in Table 1.

(2) Analytical cases
Five models are considered for flat and vault roof 
models as presented by Fig. 7 and Table 2.
●    Flat20W and Vault20W are models with weak 

mortar and bearing walls 0.2 m thick.
●    Flat20N and Vault20N are models with normal 

mortar and bearing walls 0.2 m thick.
●    Flat20S and Vault20S are models with strong 

mortar and bearing walls 0.2 m thick.
●    Flat40N and Vault40N are models with normal 

mortar and bearing walls 0.4 m thick.
●    Flat20R and Vault20R are models with normal 

mortar, bearing walls 0.2 m thick, six wooden 
columns supporting each bearing wall, two 
wooden columns supporting each nonbearing 
wall, and four wooden beams around the base of 
the roof. It is assumed that the bottom elements 
of the wooden columns are fixed to the ground, 
and that all the wooden members are connected 
to other members with mortar.

Table 1 Strength of mortar and wood

Variable
Weak

mortar [17]
Normal

mortar [6]
Strong

mortar [18]
Wood

Tensile strength ft (N/m2) 4.6 × 103 1.27 × 105 1.42 × 106 1.1 × 107

Shear strength c (N/m2) 2.9 × 103 3.04 × 104 1.19 × 106 9.0 × 106

Friction angle ϕ 32°
No data

(32° used) 
36° 0°

Compressive strength (N/m2) 
No data

(4.9 × 105 used) 
4.9 × 105 2.66 × 107 4.5 × 107

Thin bearing 
wall of 20cm 

Thick bearing 
wall of 40cm 

Weak
mortar

Normal 
mortar 

Wooden columns
and beams

Strong 
mortar 

(Flat20W)

(Flat20N)

(Flat20S) (Flat40N) (Flat20R)

(a) Flat roof model
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3.4 Material properties
Table 3 presents the material properties. The mass 
density and Young’s modulus of adobe brick are 
chosen on the basis of experimental results for adobe 
bricks obtained by Ghannand et al. [6]. The mass den-
sity and Young’s modulus of the mortar are assumed 
to be the same as those of the adobe brick. The mate-
rial properties for the wooden columns and beams are 

listed in Table 3.

Structural damping is assumed to be 2% mass-pro-
portional damping. The value of α, which defines the 
mass-proportional damping, is obtained so that the 
damping constant for the first natural frequency in the 
y direction is 2%. The computation of the natural fre-
quency is described in Section 3.5.

3.5 Natural frequency
The history of impact acceleration in the x and y 
directions is input separately for investigating the 
natural vibration characteristics in each direction. The 
impact acceleration is first input into the undamped 
masonry models, and the displacement histories of 
elements 1 and 2 (Fig. 6) are computed. Element 1 is 
located at the center of the nonbearing wall at a height 
of 2.0 m, and element 2 is at the center of the bearing 
wall at a height of 2.0 m. The time interval of the im-
pact acceleration is 0.01 s, the acceleration at the first 
time step is set as 1 m/s2, and the acceleration for the 
rest of the time is set as 0 m/s2.

Table 4 lists the first natural frequencies in each direc-
tion obtained by Fourier transformation of the free-

Fig. 7 Analytical cases

(b) Vault roof model

Table 2 Analytical cases

Model name Roof type
Thickness of 
bearing wall

Mortar strength Reinforcement measure

Flat20W

Flat
20 cm

Weak -
Flat20N Normal -
Flat20S Strong Increasing mortar strength
Flat40N 40 cm Normal Increasing thickness of bearing wall
Flat20R 20 cm Normal Introducing wooden columns and beams

Vault20W

Vault
20 cm

Weak -
Vault20N Normal -
Vault20S Strong Increasing mortar strength
Vault40N 40 cm Normal Increasing thickness of bearing wall
Vault20R 20 cm Normal Introducing wooden columns and beams

Thin bearing 
wall of 20cm

Thick bearing 
wall of 40cm 

Weak 
mortar 

Normal 
mortar 

Wooden columns 
and beams

Strong
mortar

(Vault20W)

(Vault20N)

(Vault20S) (Vault40N) (Vault20R)

Table 3 Material properties
Variable Adobe brick Mortar Wood

Mass density (kg/m3) 1.8 × 103 1.8 × 103 7.0 × 102

Young’s modulus (N/m2) 9.8 × 107 9.8 × 107 6.3 × 108

Poisson’s ratio 0.25 0.25 0.3

Structural damping
mass-proportional damping

(2% damping at the first-order natural frequency)
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vibration responses. The value in the x direction is 
obtained from the response of the center of gravity of 
element 1, and the value in the y direction is obtained 
from the response of the center of gravity of element 2.

The input acceleration is low enough to prevent 
failure of the mortar, so difference due to the mortar 
strength is not presented. Models with a flat roof have 
higher natural frequencies than those with a vault 
roof since wooden beams are stiffer and lighter than 
adobe bricks. Models with thick bearing walls have 
the highest natural frequencies in the x direction and 
second-highest natural frequency in the y direction. 
The models with wooden columns and beams have 
the second-highest natural frequency in the x direction 
and the highest natural frequency in the y direction.

3.6 Time interval
Substituting the material properties listed in Table 3 
and the dimension of each element into Eq. (19), Δt ≤ 
5.03 × 10–5 s is obtained for all cases. Therefore, the 
time interval of Δt = 5.0 × 10–5 s is used.

3.7 Input ground motion
The Building and Housing Research Center in Iran re-
corded the unique main shock of the Bam earthquake 
[19]. The maximum accelerations of the two horizon-
tal (T, L) and vertical (V) components of the earth-
quake after correction were 6.2344 m/s2 (T), 7.7828 
m/s2 (L), and 9.7995 m/s2 (V)  (Figs. 8 (a) – (c) ). The 
direction of the accelerometer for the L component is 
N278E. The vertical component is very large. For the 
horizontal components, the peak ground acceleration 
of the L component is greater than that of the T com-
ponent.

Figure 9 presents the displacement response spectra 
of the three components for a damping coefficient 

of 2%. Figure 9 (a) is the response spectrum for 
the ground motion from 0 to 3.5 s. Of the horizon-
tal components, it is found that the L component is 
dominant from 0 to 3.5 s. Figure 9 (b) is the response 
spectrum for the ground motion from 0 to 10 s. The L 
component is less than the T component for a natural 
frequency of less than 6 Hz and is greater than the T 
component for a natural frequency greater than 6 Hz. 
All vault roof models have natural frequencies of less 
than 6.0 Hz (Table 4), so the T component is domi-
nant for the vault models from 3.5 to 10 s. Although 
all flat roof models have natural frequencies higher 
than 6.0 Hz, the natural frequencies decrease as the 
failure proceeds, so it can be concluded that the T 
component is dominant in the failure process after 3.5 
s except for the flat models, such as Flat20S, which 
do not show remarkable failure behavior. From these 
findings, T is referred to as the latter dominant com-
ponent and L, the initial dominant component in this 
study. The gravitational acceleration is considered to 

be T}8.90.00.0{ −=g .

Two cases for the input ground motion direction are 
considered as presented in Table 5. In the case of 
TLV, the T, L, and V components are input in the x, y, 
and z directions, respectively. In the case of LTV, the L, 
T, and V components are input in the x, y, and z direc-
tions, respectively.

In the analysis, the gravitational force is input first. 
After structural stability under gravitational force is 
confirmed, the ground motion is input. We confirmed 
that all models stand stably under gravitational force 
without failure.

Table 4 First-order natural frequencies
Model name Roof type x direction y direction

Flat20S/Flat20N/Flat20S
Vault20S/Vault20N/Vault20S

Flat 6.64 Hz 6.05 Hz
Vault 3.91 Hz 3.13 Hz

Flat40N
Vault40N

Flat 7.03 Hz 6.08 Hz
Vault 4.49 Hz 3.32 Hz

Flat20R
Vault20R

Flat 6.84 Hz 6.45 Hz
Vault 4.29 Hz 3.32 Hz
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4. Results

4.1 Failure propagation of flat roof models
(1) Flat20W
The seismic behavior of the flat roof model with weak 
mortar (Flat20W) is shown in Figs. 10 and 11 for the 
TLV and LTV cases, respectively. Failure propaga-
tion is expressed in the following manner. The face 
of an element where no failure occurs is shown in 
light gray. The face of an element where the mortar 
connection is broken by tensile failure is shown in 
red and surrounded by black lines. Neither shear nor 
compression failure occurred.

a) TLV (Fig. 10)
Since the mortar is weak, there was tensile failure 
throughout the walls. Tensile failure occurred first in 
the bearing wall at 1.20 s as shown in the picture and 
then in the nonbearing wall at 2.00 s as shown in the 
picture. The roof beams on both edges then separated 
at 2.80 s owing to the different vibration character-
istics of the two walls. There were diagonal cracks 
around the openings in the bearing wall at 4.80 s, and 
the nonbearing walls then failed from the top and 
bricks of the nonbearing walls fell. The bearing walls 
did not fall, so the roof did not collapse.

 

  

Fig. 8 Time histories of input ground motion

Fig. 9 Displacement response spectra for a damping coefficient of 2%

(c) V component(b) L component

(b) 0–10 s

(a) T component

(a) 0–3.5 s

Table 5 Cases of the input ground motion direction
Case x direction y direction z direction
TLV T component L component V component
LTV L component T component V component

T 
L 

Fig. 10 Seismic behavior of Flat20W, TLV
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b) LTV (Fig. 11)
Similar to the case of TLV, there was tensile failure 
throughout the walls, first in the bearing wall and 
then in the nonbearing wall. Separation of roof beams 
at both edges is also seen. Deformation of the bear-
ing wall in the out-of-plane direction is seen at 4.4 
s, which is not seen in the case of TLV. There were 
horizontal cracks in the bearing wall at 4.80 s, and 
the roof then collapsed with the failure of the bearing 
walls.
c) Effect of the input ground motion direction
In the case of LTV, since the latter dominant compo-
nent, T, is input in the out-of-plane direction of the 
bearing wall, the bearing wall deforms more readily, 
leading to the total collapse of the roof. The increase in 
out-of-plane deformation increases the P–∆ effect of the 
roof weight, where roof weight P acting on the bearing 
wall with deformation ∆ enforces a moment of P∆ on 
the bearing wall, and thus, the building collapses.

In the case of TLV, the latter dominant component, T, 
is input in the in-plane direction of the bearing wall, 
and clear diagonal cracks are seen in the bearing wall. 
However, deformation of the bearing walls in the out-
of-plane direction is smaller and the walls do not fall, 
which prevents the total collapse of the roof.

The initial dominant component, L, affects the initial 
failure propagation, but the time in which the L com-
ponent is dominant is short. Therefore, the collapse 
process is dominated by the latter and longer domi-
nant component, T.

It is thus found that the total collapse of a building 
depends on the integrity of the bearing walls against 
input acceleration.

(2) Flat20N
The seismic behavior of the flat roof model with nor-
mal mortar (Flat20N) is shown in Figs. 12 and 13 for 
the TLV and LTV cases, respectively. Figures 12 (a) 
and 13 (a) are the front views and Figs. 12 (b) and 13 
(b) are the rear views. Elements 1, 2, and 3 are ele-
ments whose histories of displacement are presented 
later in the paper. Failure propagation is expressed in 
a manner similar to that for Flat20W. Neither shear 
nor compression failure occurred.
a) TLV (Fig. 12)
As seen in Fig. 12 (a), there was no tensile failure 
of the walls. First, diagonal cracks formed from the 
corner of the openings in the bearing wall at 2.00 s as 
shown in the picture. Horizontal cracks are also seen 
between the window and door openings. The number 
of diagonal and horizontal cracks then increased in 
the bearing wall at 2.80 s. There were vertical cracks 
at the edge of the bearing wall with openings at 3.60 s. 
These vertical cracks allowed the nonbearing wall to 
move more easily, and horizontal cracks formed in the 
nonbearing wall at 4.80 s. As seen in Fig. 12 (b), there 
were no diagonal cracks in the bearing wall without 
openings. Horizontal cracks were generated by out-
of-plane deformation.
b) LTV (Fig. 13)
Similar to the case of TLV, there were diagonal cracks 
and horizontal cracks in the bearing wall with open-
ings at 2.00 s as seen in Fig. 13 (a). Vertical cracks in 
the bearing wall generated at 2.80 s, earlier than in the 
case of TLV. The bearing wall then deformed in the 
out-of-plane direction at 6.00 s and fell in this direc-
tion. The roof collapsed with the failure of the bearing 
wall with openings. As seen in Fig. 13 (b), the oppo-
site bearing wall without openings deformed at 6.00 s 
because the roof pushed the wall outward, and it lost 
its balance and fell with the roof.

 

L 
T  

Fig. 11 Seismic behavior of Flat20W, LTV
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T 
L 

L 
T 

Element 3 

(a) Front view 

 

T L 

(a) Front view

(a) Front view

(b) Rear view

(b) Rear view

Fig. 12 Seismic behavior of Flat20N, TLV

Fig. 13 Seismic behavior of Flat20N, LTV
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c) Effect of the input ground motion direction
The building collapsed in the case of LTV but not in 
the case of TLV. In the LTV case, the initial dominant 
component, L, deformed the load-bearing wall in the 
in-plane direction and generated diagonal and hori-
zontal cracks. The latter dominant component, T, then 
deformed the load-bearing wall so that it collapsed in 
the out-of-plane direction. The direction of the input 
ground motion is important as it controls the occur-
rence of structural collapse.

(3) Flat20S
The seismic behavior of the flat roof model with 
strong mortar (Flat20S) is shown in Figs. 14 and 15 
for the TLV and LTV cases, respectively. There was 
tensile failure but no shear or compression failure.

a) TLV (Fig. 14)
In the case of TLV, there was only tensile failure be-
tween the floor and the bearing wall. There was no 
failure of the walls or roof. Failure occurred at 3.40 s, 
at which time the L component was dominant. The L 
component made the bearing wall move in the out-of-
plane direction and generated cracks at the base of the 
wall.
b) LTV (Fig. 15)
In the case of LTV, diagonal and horizontal cracks 
formed in the bearing wall at 3.40 s, at which time 
the L component was dominant. The L component de-
formed the bearing wall in the in-plane direction and 
generated these cracks.
c) Effect of the input ground motion direction
For the flat roof models with strong mortar, the initial 
dominant component, L, generated a small number of 

cracks with peak ground acceleration in both cases. 
The latter dominant component, T, did not generate 
cracks.
d) Effect of mortar strength
From a comparison of Figs. 10–15, the effect of mor-
tar is clear. Increasing mortar strength is effective in 
preventing the collapse of structures.

(4) Flat40N
The seismic behavior of the flat roof model with thick 
bearing walls and normal mortar (Flat40N) is shown 
in Figs. 16 and 17 for the TLV and LTV cases, respec-
tively. There was tensile failure but no shear or com-
pression failure.

a) TLV (Fig. 16)
Compared with the Flat20N model (Fig. 12), there 
were few cracks in the bearing wall. However, the 
crack patterns in the walls were similar to those of 
Flat20N.
b) LTV (Fig. 17)
Compared with the Flat20N model (Fig. 13), the 
crack patterns in the walls were similar, but the num-
ber of cracks and the out-of-plane deformation of the 
bearing wall were smaller and the structure did not 
collapse.
c) Effect of the thickness of the bearing wall
By increasing the thickness of the bearing wall, the 
number of cracks decreased and the structure did 
not collapse in the case of LTV. Thus, increasing the 
thickness of bearing walls is also effective in increas-
ing the seismic resistance of a structure.

T 
L 

Fig. 14 Seismic behavior of Flat20S, TLV

L 
T 

Fig. 15 Seismic behavior of Flat20S, LTV
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(5) Flat20R
The seismic behavior of the flat roof model with 
wooden columns and beams and normal mortar 
(Flat20R) is shown in Figs. 18 and 19 for the TLV and 
LTV cases, respectively. There was tensile failure but 
no shear or compression failure.

a) TLV (Fig. 18)
Compared with the Flat20N model (Fig. 12), there 
were fewer cracks in the bearing wall. The crack pat-
terns in the walls also differed and there were fewer 
diagonal cracks.
b) LTV (Fig. 19)
Compared with the Flat20N model (Fig. 13), the 
crack patterns in the walls differed. In addition, there 
were fewer cracks and less out-of-plane deformation 
of the bearing wall, and the bearing wall did not col-
lapse.
c) Effect of wooden columns and beams
By introducing wooden columns and beams, the num-

ber of cracks, especially diagonal cracks, decreased, 
and the structure did not collapse in the case of LTV. 
Reinforcement using wooden columns and beams is 
thus also found to be effective.

(6) Comparison of reinforcement measures
From a comparison of Flat20W, Flat20N, and Flat20S, 
it is successfully simulated that increasing the mortar 
strength effectively increases the seismic strength of 
the model, which is natural since failure is only intro-
duced in the mortar. We can also see how the failure 
behaviors differ depending on the mortar strength.

In addition, from a comparison of Flat20N, Flat40N, 
and Flat20R, it is found that increasing the thickness 
of the bearing walls and reinforcement with wooden 
columns and beams also increases the seismic 
strength of the model even though many cracks are 
generated in the walls.

T 
L 

Fig. 16 Seismic behavior of Flat40N, TLV

T 
L 

Fig. 17 Seismic behavior of Flat40N, LTV

T 
L 

Fig. 18 Seismic behavior of Flat20R, TLV

L 
T 

Fig. 19 Seismic behavior of Flat20R, LTV
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The displacement histories of Flat20S, Flat40N, and 
Flat20R are compared with those of Flat20N to in-
vestigate the effectiveness of increasing the mortar 
strength, increasing the thickness of the walls, and 
introducing wooden columns and beams.

Figures 20 and 21 show the histories of displacement 
of elements 1, 2, and 3. Element 1 is at the center of 
the nonbearing wall, so its out-of-plane direction, x, 
is investigated. On the other hand, elements 2 and 3 
are at the centers of the bearing walls, so their out-of-
plane direction, y, is investigated. The height of these 
elements is 2.0 m. Figures 20 and 21 show the results 
for the TLV and LTV cases, respectively. Since the 
Flat20N model collapsed in the case of LTV, the his-
tory of Flat20N is off the scale in Figs. 21 (b) and (c).

By comparing Fig. 20 (a) with Fig. 21 (a), it can be 
seen that the LTV case (Fig. 21 (a) ) has larger ampli-
tudes in the x direction at 0–3.5 s because the larger L 
component results in larger displacement. Similarly, 
the TLV case (Figs. 20 (b) and (c) ) has larger am-
plitudes in the y direction at 0–3.5 s. Later, there is a 
tendency for the amplitude in the other direction to be 
larger.

Comparing Flat20N and Flat40N, the displacement of 
element 1 on the nonbearing wall is similar since the 

thickness of the nonbearing wall is the same. On the 
other hand, the displacements of elements 2 and 3 on 
the bearing walls differ between Flat20N and Flat40N 
since the bearing walls of Flat40N are thicker. By in-
creasing the thickness of the bearing wall, the out-of-
plane deformation decreases, which prevents collapse 
in the case of LTV.

Compared with the displacements of Flat20N and 
Flat40N, those of Flat20R and Flat20S are much 
smaller for the three elements in both directions. The 
effectiveness of increasing the mortar strength and re-
inforcement with wooden columns beams is clear and 
is superior to increasing the thickness of the bearing 
walls. Flat20S has less displacement, so increasing 
the mortar strength is found to be the most effective 
approach. Flat20R is the second-best model in terms 
of reducing the displacement response.

(7) Summary of the failure propagation process
The failure propagation process of the flat roof mod-
els is summarized as follows.
1)    Diagonal and horizontal cracks form in walls from 

the corners of openings.
2)    These cracks increase the out-of-plane deforma-

tion of the roof.
3)    The out-of-plane deformation induces vertical 

cracks in the corners.

   

Fig. 20 History of displacement, TLV
(c) Element 3, y(b) Element 2, y(a) Element 1, x

   

Fig. 21 History of displacement, LTV
(c) Element 3, y(b) Element 2, y(a) Element 1, x
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4)    The vertical cracks separate wall-to-wall connec-
tions.

5)    The out-of-plane deformation of walls increases 
since walls can move more independently.

6)    The increase in out-of-plane deformation increases 
the P–∆ effect of the roof weight.

7)    The wall falls with the roof.

4.2 Failure propagation of vault roof models
(1) Vault20W
The seismic behavior of the vault roof model with 
weak mortar (Vault20W) is shown in Figs. 22 and 23 
for the TLV and LTV cases, respectively. The pro-
cess of failure propagation is expressed in the same 
manner as for the flat roof models. There was neither 
shear nor compression failure.

In both cases of input ground motion direction, the 
vault roof collapsed under its own weight. The vault 
roof pushed the two supporting bearing walls out-
ward, so the walls collapsed in the out-of-plane direc-
tion as soon as the simulation started. The nonbearing 
walls did not collapse under their own weight because 
they did not support the weight of the roof. Instead, 
the nonbearing walls collapsed in the out-of-plane 

direction owing to the input ground motion. No clear 
difference due to the direction of the input ground 
motion is seen since the structure collapsed mainly 
under its own weight owing to the instability of the 
roof.

(2) Vault20N
The seismic behavior of the vault roof model with nor-
mal mortar (Vault20N) is shown in Figs. 24 and 25 for 
the TLV and LTV cases, respectively. There was only 
tensile failure and no shear or compression failure.

It is confirmed that Vault20N was not damaged if 
there was no ground motion. However, small initial 
ground motion triggered movement of the roof, and 
this unbalanced the weight distribution and the roof 
collapsed. Since the vault roof pushed the bearing 
walls outward, the bearing wall with openings easily 
cracked with small input ground motion at 1.20 s as 
seen in the picture. The difference in the failure pro-
cess due to the direction of the input ground motion 
was small. In both cases, the bearing walls started 
collapsing with the small initial ground motion, and 
the nonbearing walls collapsed later with larger am-
plitudes of ground motion.

 

T 
L 

Fig. 22 Seismic behavior of Vault20W, TLV

 

L 
T 

Fig. 23 Seismic behavior of Vault20W, LTV
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(3) Vault20S
The seismic behavior of the vault roof model with 
strong mortar (Vault20S) is shown in Figs. 26 and 27 
for the TLV and LTV cases, respectively. There was 
only tensile failure and no shear or compression failure.

Vault20S has strong mortar strength, so the struc-
ture did not collapse even though the bearing wall 
with openings was more cracked than in the case of 
Flat20S.

(4) Vault40N
The seismic behavior of the vault roof model with 
thick bearing walls and normal mortar (Vault40N) is 
shown in Figs. 28 and 29 for the TLV and LTV cases, 
respectively. There was only tensile failure and no 
compression failure.

Since the bearing walls are thicker, the roof collapsed 
more slowly than Vault20N as shown in Figs. 24 and 
25. In the case of TLV (Fig. 28), the two bearing walls 
did not collapse. However, in the case of LTV (Fig. 
29), the bearing wall with openings fractured since 

 

T 
L 

Fig. 24 Seismic behavior of Vault20N, TLV

 

L 
T 

Fig. 25 Seismic behavior of Vault20N, LTV

T 
L 

Fig. 26 Seismic behavior of Vault20S, TLV

L 
T 

Fig. 27 Seismic behavior of Vault20S, LTV
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the dominant T component acted in the out-of-plane 
direction of the bearing wall.

For the flat roof models, structural collapse depends 
on the integrity of the bearing walls. Therefore, in-
creasing the thickness of the bearing walls prevented 
the collapse of the roof in the case of LTV. However, 
for the vault roof models, the thicker bearing walls 
slow the collapse of the roof and they are themselves 
less damaged, but this does not always prevent the 
collapse of the roof. More specifically, if the roof 
itself is weak or unstable, it collapses irrespective of 
the strength of the bearing walls. Reinforcement of 
the roof is thus necessary in the first place.

(5) Vault20R
The seismic behavior of the reinforced vault roof 
model with normal mortar (Vault20R) is shown in 
Figs. 30 and 31 for the TLV and LTV cases, respec-
tively. There was only tensile failure and no shear or 
compression failure.

Since the four roofs are supported by wooden col-
umns and surrounded by wooden beams, the roof col-
lapsed more slowly than in the case of Vault40N (Figs. 
28 and 29). However, the roof did not survive the 

earthquake motion and collapsed during the period of 
large-amplitude ground motion. The wall was rein-
forced with wooden columns, but the bricks around 
the openings scattered.

(6) Comparison of reinforcement measures
The displacement histories of Vault20S, Vault40N, 
and Vault20R are compared with those of Vault20N to 
investigate the effectiveness of increasing the mortar 
strength, increasing the thickness of the bearing walls, 
and introducing wooden columns and beams. Figures 
32 and 33 show the histories of displacement of ele-
ments 1, 2, and 3.

Comparing Vault20N and Vault40N, it can be seen 
that elements 1 and 2 fell in both cases but the ele-
ments of Vault40N fell later than those of Vault20N, 
and that element 3 of Vault40N did not fall while that 
of Vault20N did. These findings confirm the effec-
tiveness of increasing the thickness of bearing walls.

Comparing Vault40N and Vault20R, it can be seen that 
element 1 of Vault40N fell but that of Vault20R did 
not since the nonbearing walls of Vault20R were rein-
forced and those of Vault40N were not. As for element 
3, which did not fall in either model, the displacement 
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Fig. 28 Seismic behavior of Vault40N, TLV
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Fig. 29 Seismic behavior of Vault40N, LTV
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of Vault20R was slightly larger than that of Vault40N 
in the case of LTV since the great weight of the roof 
pushed the bearing wall in the out-of-plane direction 
and the thinner walls with wooden columns deformed 
more easily than the thick walls without columns.

The displacement of Vault20S was the smallest 

among all models. It can be seen that increasing the 
mortar strength is the most effective approach.

(7)   Summary of the failure propagation process
The failure propagation process of the vault roof mod-
els is different from that of the flat roof models, and is 
summarized as follows.
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Fig. 30 Seismic behavior of Vault20R, TLV
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Fig. 31 Seismic behavior of Vault20R, LTV

Fig. 32 History of displacement, TLV
(c) Element 3, y(b) Element 2, y(a) Element 1, x

Fig. 33 History of displacement, LTV
(c) Element 3, y(b) Element 2, y(a) Element 1, x
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1)    The weight of the roof pushes the bearing walls in 
the out-of-plane direction.

2)    With small deformation of the buildings induced 
by small initial ground motion, the heavy weight 
of the vaulted roof increases the out-of-plane de-
formation of the walls owing to the P–∆ effect.

3)    The instability of the roof increases, and the roof 
collapses.

4)    If the bearing walls do not have sufficient strength, 
they collapse due to the collapse of the vaulted 
roof.

4.3   Failure mechanism of past earthquake damage 
and simulation results

(1) Past earthquake damage
Photographs 1 (a) and (b) show two houses damaged 
by earthquakes. Photograph 1 (a) is of a house dam-
aged during the 2003 Bam earthquake in Iran. Pho-
tograph 1 (b) is of a house damaged during the 1976 
Friuli earthquake in Italy.

In Photo 1 (a), the nonbearing walls have been de-
molished, but the roof has not collapsed because the 
bearing walls are supported by the adjacent buildings. 
In Photo 1 (b), the nonbearing walls are still stand-
ing, even though the roof and bearing walls have 
collapsed. These two cases indicate that the stability 
of the roof depends on the two bearing walls and that 
failure of the roof can be avoided if the bearing walls 
are supported somehow, regardless of damage to non-
bearing walls.

(2) Simulation results
For the flat roof models, the above collapse mecha-
nism is confirmed by the simulation. For example, 
Flat20N in the case of LTV collapsed because the 
bearing wall fractured, but Flat20N in the case of 
TLV did not collapse because the bearing wall did 
not. Moreover, by increasing the thickness of the 
bearing wall of Flat20N, structural failure of Flat40N 
was avoided even though the nonbearing wall was the 
same.

For the vault roof models, thick bearing walls and 
wooden columns and beams had little effect. They 
only delayed the failure, and collapse of the roof 
could not be avoided. This is because the roof of the 
analyzed model itself was weak. The roof requires 
minimum levels of strength and integrity before rein-
forcements of bearing walls are effective.

It is noted that the comparison between the analytical 
results for flat and vaulted roof models does not in-
dicate that the vaulted roof model is far more vulner-
able to earthquakes. The analyzed flat roof model has 
much lighter roofs made only by wooden beams, but 
in reality, mud and trees branches are used to cover 
flat roofs depending on the area, and this makes the 
roof heavier and more vulnerable. Moreover, the vul-
nerability of the analyzed vault roof models changes 
depending on the roof thickness, so we cannot simply 
discuss the superiority of the flat and vaulted roof 
models through these simulation results.

(a) Bam Earthquake, Iran (2003) (b) Friuli Earthquake, Italy (1976)
Photo 1 Buildings damaged by earthquakes
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4.4 Scattering of bricks after earthquakes
(1) Flat roof models
The areas of scattered fallen bricks are compared. 
Overhead views from the basement of flat roof mod-
els are shown in Figs. 34 and 35.

In the case of LTV, Flat20W was severely damaged, 
and the bricks in the nonbearing walls were mainly 
scattered around these walls (Fig. 34 (a) ). In the case 
of TLV, Flat20W and Flat20N collapsed, and the area 
of scattered bricks for Flat20W was larger than that 
for Flat20N owing to the weakness of the mortar. It 
can be seen that the mortar strength affects not only 
the failure propagation process but also the area of 
scattering. Walls connected with weaker mortar tend 

to vibrate more greatly, and this may increase the area 
of scattered fallen bricks. The effect of the direction 
of the input ground motion is clear from a comparison 
of Figs. 34 and 35, since the flat roof models are dam-
aged mainly by the earthquake ground motion.

(2) Vault roof models
Overhead views from the basement of the vault roof 
models are shown in Figs. 36 and 37. No effect of 
the direction of the input ground motion is seen in 
the comparison of Figs. 36 and 37 because the vault 
roof models collapsed owing to the weight imbalance 
induced by small deformation due to the initial earth-
quake ground motion.
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Fig. 34 View from the basement of flat roof models, TLV
 (a) Flat20W (b) Flat20N (c) Flat20S (d) Flat40N (e) Flat20R
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Fig. 35 View from the basement of flat roof models, LTV
 (a) Flat20W (b) Flat20N (c) Flat20S (d) Flat40N (e) Flat20R
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5. Conclusions
In this paper, failure propagation of masonry build-
ings during earthquakes is simulated using a refined 
DEM that can simulate three-dimensional elastic, 
failure, and collapse behaviors of structures. The seis-
mic behaviors of models with a flat roof or vault roof 
are simulated and their failure mechanisms are dis-
cussed. In addition, the influence of the direction of 
the input ground motion on the failure propagation is 
investigated. Moreover, the effectiveness of three re-
inforcement measures was compared. One measure is 
increasing the mortar strength, the second is increas-
ing the thickness of the bearing walls, and the third is 
introducing wooden columns and beams, which have 
higher tensile strength than the bricks.

Even though the simulation is limited to one set of 
earthquake records, the following findings are ob-
tained through the simulations.

The stability of the roof of the flat roof models is de-
pendent on the out-of-plane deformation of the bear-
ing walls. Therefore, if the out-of-plane deformation 

of the bearing walls is small, collapse of the roof can 
be avoided. Therefore, a reinforcement that reduces 
out-of-plane deformation is effective. Increasing the 
thickness of the bearing walls and introducing wood-
en columns and beams are only partial reinforce-
ments, but both are effective since they reduce out-
of-plane deformation. Increasing the mortar strength 
is the most effective approach since it increases the 
whole structural strength and reduces deformation on 
the whole. It is also found that the failure propagation 
of the flat roof models is dependent on the directions 
of the input ground motion since the out-of-plane de-
formation of the bearing walls depends on the charac-
teristics of the ground motion.

For the vault roof models, the collapse of the roof is 
induced by its heavy weight and instability triggered 
by movement due to ground motion. Increasing the 
mortar strength is the most effective approach since 
it directly increases the strength of the roof. Increas-
ing the thickness of the bearing walls and introducing 
wooden columns and beams are effective in reducing 
the instability of the roof since they reduce the out-
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Fig. 36 View from the basement of vault roof models, TLV
 (a) Vault20W (b) Vault20N (c) Vault20S (d) Vault40N (e) Vault20R
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Fig. 37 View from the basement of vault roof models, LTV
 (a) Vault20W (b) Vault20N (c) Vault20S (d) Vault40N (e) Vault20R
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of-plane deformation of the bearing walls supporting 
the roof. However, since these measures do not in-
crease the strength of the roof, the roof collapses even 
though the bearing walls remain.

It is found that the roof needs minimum levels of 
strength and integrity before the reinforcement of 
bearing walls can become effective. If the roof has the 
minimum strength and integrity, the stability of the 
roof depends on the two bearing walls and failure of 
the roof is avoided if the bearing walls are supported 
somehow regardless of damage to nonbearing walls. 
Increasing the thickness of the bearing walls and in-
troducing wooden beams and columns are both effec-
tive in reducing the out-of-plane deformation of the 
bearing walls. Increasing the mortar strength is the 
most effective approach since it increases the whole 
structural integrity including the walls and the roof.

In a future study, we would like to develop a code for 
evaluating the failure of the brick itself as well as an 
appropriate damping model.
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