論文 数値地理情報と降雨極値データ を利用した土砂災害発生確率 モデルの構築

川越 清樹*・風間 聡*・沢本 正樹**

A Probability Model of Sediment Hazard Based on Numerical Geographic Information and Extreme Precipitation Data

Seiki KAWAGOE*, So KAZAMA* and Masaki SAWAMOTO**

Abstract

A probability model of sediment hazard was made by multiple logistic regression analysis. Relief energy, hydraulic gradient due to extreme precipitation of return period and geological features are used as parameters in this model. The risk has been analyzed quantitatively by giving a probability through setting the cause of the sediment hazard. The evaluation of the probability distribution in Japan has been performed by using those conditions that are expressible by digital geographic information. The probability distribution is composed of the 1 km× 1 km resolutions that can reflect the social risk and global changes. Dangerous areas could be extracted according to the probability of showing quantitative risk. These results are useful for the decision of the areas for the countermeasure plan. In summary, the results are as follows. (1) The urban area that extends a Chugoku mountainous district is at high risk with sediment hazard by extreme precipitation of 10-year return period. (2) The high risk areas have been extracted from the urban areas in Japan by extreme precipitation of 100-year return period, and an enormous economic loss has been predicted. (3) Probability of the resolutions has been verified to reflect information on probability of $50 \,\mathrm{m} \times 50 \,\mathrm{m}$ resolutions.

キーワード:再現期間, 動水勾配, 多重ロジスティック回帰分析, ハザードマップ Key words: return period, hydraulic gradient, multiple logistic regression analysis, hazard map

*	東北大学大学院環境科学研究科			
	Department of Environmental Studies, To	ohoku University		

1. はじめに

地球温暖化に伴う水循環の活発化による降水形 態の変化、特に、豪雨の発生頻度の増加が指摘さ れている¹⁾。気象庁・気象研究所の地域気候モデ ル RCM20による研究成果は、北海道南部、三陸 周辺、東北地方南部と関東平野中央の日降雨量 25% 増加を予測している2)。近年の事例を参考に すれば、2004年の豪雨頻度は平年比の約2倍に相 当し、災害統計観測史上最多の2537箇所の土砂災 害を引き起こした³⁾。また、日本列島は急峻かつ 複雑な地形と脆弱な地質から形成されるため土砂 災害の発生しやすい地勢を呈する。これら事例や 状況を考慮すると、豪雨発生頻度の増加に伴う日 本列島の土砂災害の増加が予測される。また、近 年の土砂災害による犠牲者の増加が指摘されてい る4)。この動向は、豪雨を考慮した土砂災害評価 および対策が安全な国土形成の重要課題になるこ とを示唆する。

災害の軽減にはソフトとハードの対策が必要で ある。ソフト対策として、危険、非危険の地域を 分離し、社会、生活を安全な地域に誘導するハ ザードマップが有用であり、災害履歴の多い地域 を中心に全国各地で整備されている。既往研究で も降雨条件を考慮した土砂災害に関するハザード マップの作成事例が多数存在する。榊原ら⁵⁾はラ フ集合を用い降雨時に警戒すべき崖を抽出した。 Temesgen ら⁶⁾は降雨分布と水系網を用いて危険度 の高い地域を抽出した。水田と瀬尾⁷⁾はこれら条 件を無限長斜面安定解析に利用し安全率から危険 地域を特定した。lida⁸⁾は降雨の再現期間と風化 を考慮することで土砂崩壊の再現期間を導いた。 これらの先行研究は流域や市町村等の数百 km²程 度を対象にした中小規模領域の土砂災害危険度評 価である。中小規模毎の評価は対象地域間の危険 度に差異を生じさせる。また、地球温暖化から予 測される降水形態の変化を利用した場合,地域間 における危険度の差異が増幅する可能性をもつ。 この問題に対して、中小規模地域を包括した広域 の危険度評価が必要になる。広域を対象にするこ とで中小規模領域同士の危険度を同一の基準で評 価することができる。また、粗解像度である全球 規模の気候変化予測モデルの関連付けも容易にな る。また、広域を対象にした成果は対策の意思決 定に有用であり、国土政策における対策費用の適 地配分に利用できる。

本研究は日本列島全域を対象に再現期間の24時 間降雨極値を考慮した土砂災害危険度評価モデル の構築を試みたものである。このモデルは災害実 績に対する地形と地質の地域条件および降雨条件 から構築される。日本列島の地形,地質,降雨条 件の数値地理情報をモデルに導入することでグ リッドセル毎の特徴に応じた土砂災害発生確率分 布を導く。このモデルから導かれる土砂災害の発 生確率は,地形,地質および降雨を含む水文条件 の状態変化に応じた土砂災害の発生する確率とし て定義される。

危険度評価の結果は、高低およびランクにより 示される定性的な指標。発生確率および斜面の安 全率による定量的な指標に分類される。定量的な 指標は地域間の土砂災害危険度の差異を容易に理 解させるため、対策工事および将来的な対処の優 先度に有用である。安全率は、斜面の滑動力と抵 抗力による釣合いを物理的に算定することで得ら れるものであり、対策工事に直結できる汎用性の 高い指標である。しかしながら、安全率を導出さ せる安定解析では土質条件に慎重な議論が必要に なる。活動的な斜面における土質の粘着力と内部 摩擦角は著しく変化しやすい、一般的に安定解析 に利用される極限平衡法に安定斜面の土質定数を 適用するのが困難等の問題をもつ。なぜなら、こ の問題に対して、多数の現地調査と解析の事例の 整理が必要になるからである。一方、統計的な手 法を用いると土質条件に関する詳細情報は不要に なる。したがって、広域を対象とする場合、物理 過程を考慮した解析手法よりも統計的な手法を用 いる方が効率的である。Ohlmacher and Davis⁹⁾は 発生確率による土砂災害評価モデルを構築した が、この評価に利用されたデータは地形と地質の みである。降雨条件が考慮されていない、固結度 の低い地質よりも高い地質が高い危険度を示す等 の問題をもつものの広域に適用しやすいモデルで ある。本研究では、これらの問題点を改良した広

域の危険度評価に適するモデルの構築を試みた。 降雨は土砂災害の誘因であり,短時間の変化を示 すことのできる動的な情報である。再現期間毎の 降雨極値を利用することで,土砂災害の発生しや すい時間的な情報を得ることも可能になる。本研 究は,気候変化の目安として利用される再現期間 10年および30年,大規模土木構造物の設計基準と して利用される再現期間100年に対する降雨極値 を利用し,土砂災害の発生確率を導いた。本研究 の成果は,地球温暖化による降雨予測による結果 との比較から,将来の土砂災害の影響に関する議 論も可能な資料になる。研究の成果は日本列島を 対象とした土砂災害の発生確率分布によるハザー ドマップとなる。図1に本研究の流れを示す。

2. データセット

土砂災害発生確率モデルに,地質,地形,降雨 情報を用いた水文データ,災害実績のデータを利 用する。これらは解像度1km×1kmの数値地理 情報である。したがって,土砂災害の発生確率も 解像度1km²の分布図で示される。この解像度に は多種の社会基盤情報が用意されている。社会リ

図1 本研究の流れ

スクの算定および国土政策における対策費用の適 地配分の検討に適した解像度である。

2.1 地質・地形データ

地質データとして国土数値情報のKS-META-G05-54Mを用いる。このうち,未固結状態にあ る崩積土,続成期間の短い半固結状態にある新第 三系堆積岩と古第三系堆積岩,造山鉱物にカオリ ナイトを含み粘土化しやすい花崗岩の土砂および 土砂化しやすい4種類の地質を対象にした。新第 三系堆積岩は風化や熱水変質の顕著な地質として 知られている。また,新第三系堆積岩に属するグ リーンタフの分布する日本海側は土砂災害の発生 しやすい地域として認識されている¹⁰⁾。そのた め,第三系堆積岩を新第三系堆積岩と古第三系堆 積岩に分類した。

地形データとして起伏量を用いる。起伏量の大 きな地域は、地形開析を助長し、活発に地形発達 する。そのため、山地崩壊評価に起伏量が利用さ れてきた(例えば吉松¹¹⁾)。起伏量は、解像度1 km²のグリッドセル内における地形の高低差と定義 され、国土数値情報のKS-META-G05-56Mに格納 された最高標高と最低標高の差から求められた。

大分類した地質および起伏量の分布図を図2に 示す。

2.2 水文データ

水文データとして動水勾配を用いる。急な動水 勾配は斜面の有効応力を減少させるため斜面の不 安定化を促す。動水勾配の増加は,地下水上昇を 表現し,土塊内の間隙水圧を増加させるため抵抗 力を減少させる。また,動水勾配の増加した斜面 末端部は斜面尻の土砂流出を促すため斜面の滑動 力を増加させる。更に,土砂流出はパイピング現 象を増長させるため,斜面の滑動力が増加する。 動水勾配は,数値地理情報から擬似二次元化した 斜面を作成し,浸透解析によって求めた。擬似斜 面に利用するデータは KS-META-G05-54 Mの表 層土壌と,KS-META-G05-56 Mの斜面傾斜度,24 時間雨量の極値データである。以下に浸透解析方 法,降雨極値データについて説明する。

図2 国土数値情報の利用データ

(1) 浸透解析方法

浸透解析に Richards の二次元飽和不飽和浸透解 析モデルを用いる¹²⁾。日本列島は脆弱な地質と森 林土壌の発達した地相をなす。このため、地表水 から地中水への移動は、主に不飽和状態でおこな われる。この状態を考慮すると、雨水浸透の再現 には不飽和状態も考慮した浸透解析が必要にな る。本研究に用いた動水勾配は、地下水および土 壌水分のない斜面に降雨を与え、降水後に最大傾 斜を示す浸潤線から求めたものである。この動水 勾配は実現象を再現したものではないものの、再 現期間の降雨極値と不飽和から飽和に遷移する過 程を踏まえたグリッドセル毎の地下水特性を導 く。図3に浸透解析の模式断面を示す。

浸透解析に用いた Richards の方程式は式(1)から式(6)で与えられる。式(1)は飽和不飽和浸透
 理論に基づいた Richards の方程式である。添え字のx は水平方向, z は鉛直方向を示す。

$$\frac{\partial \theta}{\partial t} = -\left(\frac{\partial V_x}{\partial x} + \frac{\partial V_z}{\partial z}\right) \tag{(1)}$$

ここで、 θ :体積含水率、t:時間、V:流速である。流速Vは式(2)のダルシー則の運動方程から求める。

$$V_{x} = -K_{x} \frac{\partial \phi}{\partial x}$$

$$V_{z} = -K_{z} \frac{\partial \phi}{\partial z}$$
(2)

図3 浸透解析モデル断面図

ここで*K*:不飽和透水係数, φ:全水頭である。 式(3)に示す全水頭φは圧力水頭と位置水頭の和 より求める。

$$\phi = \psi - x \sin \alpha - z \cos \alpha \tag{3}$$

ここで、 ψ : 圧力水頭、 α :斜面の傾斜度である。 式(1)に式(2)を代入し、 $C(\psi) = \partial \theta / \partial \psi$ を導入 することで(4)を求める。

$$C\frac{\partial\psi}{\partial t} = \frac{\partial}{\partial x} \left(K_x \frac{\partial\psi}{\partial x} - K_x \sin\alpha \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial\psi}{\partial z} - K_z \cos\alpha \right)$$
(4)

ここで*C*:比水分容量である。体積含水率θは式 (5)に示す谷式¹³⁾から求めた。

$$\theta = \left(\theta_r - \theta_s\right) \left(\frac{\psi}{\psi_0} + 1\right) \exp\left(-\frac{\psi}{\psi_0}\right) + \theta_r \qquad (5)$$

不飽和透水係数Kの算定に式(6)に示す一般化 Kozeny 式¹⁴⁾を用い,体積含水率 θ と関係から求 めた。

$$K_{x} = Ks_{x} \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{\beta}, K_{z} = Ks_{z} \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right)^{\beta} \quad (6)$$

ここで, θ_s:飽和体積含水率, θ_r:残留体積含水 率, ψ₀:Cが最大となるψ, β:土壌固有の定数, Ks:飽和透水係数である。

表層土壤は,礫質土,砂質土,シルト,粘土に 分類し,浸透解析に用いた。表1に表層土壌の詳 細条件を示す。また,図2に大分類した表層土壌 を示す。解析は10日間タイムステップ1時間で行 い,最初の1日に降雨が生ずるものとした。な お,24時間雨量を時間毎に等分配した。

(2) 再現期間の降雨極値

降雨極値の数値地理情報を AMeDAS 観測所に おける1980年から2000年の24時間降水量データと メッシュ気候値2000(発行:気象庁)を利用して 作成する。手順の概要は1)から3)のとおり。

- AMeDAS 観測所毎に経年の最大24時間降雨量 を頻度解析し、各再現期間に対する24時間雨 量の極値を求める。
- 2)再現期間毎の降雨極値と AMeDAS 観測所の位 置するメッシュ気候値の関係を気候タイプ毎 の回帰式で示す。

土壤	透水係数 ks(cm/s)	飽和体積 含水率 <i>θs</i>	残留体積 含水率 <i>θr</i>	比水分量 の最大に なる水頭 Ψ	特性值 β	対応土壌 データ
礫質土	1×10^{2}	0.30	0	0	3	岩屑性, 褐色低 地
砂質土	1×10^{3}	0.40	0	0	3	褐色化, グライ, 砂丘
シルト	1×10 ⁴	0.45	0	0	5	黒ボク,ポドゾ ル,森林,湿性 森林
粘土	1×10^{5}	0.50	0	0	20	泥炭

表1 表層土壤詳細条件

 3)回帰式にメッシュ気候値を代入することで、 再現期間に対する降雨極値の分布データが作 成できる。

AMeDAS 観測所に対する降雨極値の頻度解析に, 確率分布型として一般化極値分布GEV (Generalized Extreme Value),母数推定法として PWM (Probability Weight Moment)法を用いる。 極値分布は,母集団に対する最大値および最小値 の漸近分布である。そのため,降雨や洪水流量の 最大値抽出に有効な確率分布である。GEV分布 関数は式(7)と式(8)で求められる。

$$F(x) = \exp\{-\exp(-s)\}$$
(7)

$$s = \begin{cases} -\frac{1}{k} \ln\left\{1 - \frac{k(x-c)}{a}\right\} & (k \neq 0) \\ \frac{x-c}{a} & (k=0) \end{cases}$$
(8)

ここで、S:標準変数、F(X):確率変数xの分布
 関数、c,a,kは母数パラメータである。PWM法は
 式(9)から式(12)で求められる。

$$\beta_r = E\left\{X\left[F(X)\right]^r\right\} = \int_0^1 x F^r dF \qquad (9)$$

$$\beta_{r1} = \frac{1}{N} \sum_{j=1}^{N} x_{(j)} \left\{ F(x_{(j)}) \right\}^{r} \quad (r = 0, 1, 2)$$
(10)

$$\begin{cases} \lambda_1 = \beta_0 \\ \lambda_2 = 2\beta_1 - \beta_0 \\ \lambda_3 = 6\beta_2 - 6\beta_1 + \beta_0 \end{cases}$$
(11)

$$\begin{cases} \lambda_1 = c + \left(\frac{a}{k}\right) \left[1 - \Gamma(1+k)\right] \\ \lambda_2 = \left(\frac{a}{k}\right) (1 - 2^{-k}) \Gamma(1+k) \\ \frac{2\lambda_2}{\lambda_3 + 3\lambda_2} = \frac{1 - 2^{-k}}{1 - 3^{-k}} \end{cases}$$
(12)

ここで、 β_r :確率重み付積率 (PWM), $E \{\cdot\}$:期 待 値 演 算 子, F(X):確率変数 X の分布 関 数, $x_{(j)}$:N 個の標本を大きさ順に並べ換えたときの 小さいほうより j 番目の値、 β_{r1} :標本による PWM の推定値、 $F(x_{(j)})$: $x_{(j)}$ のプロッティングポディ ション、 λ_l :L 積率、r:次数、 $\Gamma()$:ガンマ関数 である。GEV 分布による降雨極値は全国各地の 1024箇所の AMeDAS 観測所から求められた。

通常,降雨データを補間する場合.重み付距離 平均法や Thiesen 法を用いる。日本列島を対象に する場合,降雨分布は地形の起伏に影響されるた め^{15,16)} 単純な距離的な重み付けによる補間では 表現できない。対して、メッシュ気候値2000は地 形因子を説明変数にする重回帰式から導かれた降 水の数値地理情報である。牛山ら¹⁷⁾はAMeDAS 観測所の暖候期平年降水量(4月から11月)と日 降雨極値の関係を示し.統計的に有意な相関を利 用して、回帰式による日降雨極値算定モデルを作 成している。このアルゴリズムを参考にすれば、 メッシュ気候値に格納された暖候期降水量の利用 による降雨極値の分布データの作成が可能であ る。しかし、牛山らの日降雨量の結果を参考にす ると、回帰式と降雨極値に約500mmもの誤差が ある AMeDAS 観測所も存在する。この誤差を極 力小さくするため、日本列島を気候特性から区分 し、複数の回帰式による再現期間毎の24時間降雨 極値算定モデルの作成を試みる。気候依存した降 雨イベントとして台風を例に説明すると、日本列 島の北側ほど勢力が弱まり、降雨分布の地域格差 が生じる。本研究に用いる降雨の気候は最大月降 水量の該当する季節から分類される。春型は3月 から5月、夏型は6月から8月、秋型は9月から 11月,冬型は12月から2月と区分した。春と夏 型,秋型,冬型毎の暖候期中の最大月降水量と、 AMeDAS 観測所の再現期間に対する降雨極値を 用い、気候に応じた回帰式を求める。春季に最大 降雨量を示す地域は, 薩南諸島以南のみであるこ と、この地域の夏季と春季はほとんど降雨差がな いことの理由から夏型に統合することとした。各 気候タイプに対し、暖候期中の月最大降水量と再 現期間30年の降雨極値の関係を回帰式で示したも のが図4である。回帰式との誤差は、最大でも 250mm 程度に改善されていることがみてとれる。 図5はメッシュ気候値2000から作成された日本列 島の気候タイプの分布図である。各メッシュの暖 候期中の月最大降水量を各気候タイプに応じた回 帰式に導入することで、日本列島全域の降雨極値

分布を作成できる。表2に各気候タイプにおける 暖候期中の月最大降雨量と降雨極値の関係要素を 示す。図6に再現期間5年,30年,100年の降雨 極値分布を示す。

2.3 災害実績データ

災害実績データは発生確率モデルの構築に利用 される。同一の降雨イベントや降雨極値により日 本列島全域に土砂災害が頻発した事例はなく、モ デル構築に日本列島全域を一律で利用することが 困難である。このため、土砂災害が頻発したある 地域およびイベントの事例からモデルを構築す る。このモデルに日本列島各地の数値地理情報を

導入することで発生確率分布を作成する。モデル 構築の基礎データは、1)現在の自然と社会が反 映できる最近のデータである、2)対象とする地 質がすべて分布する、3)災害実績が分布的に示 された資料が残っている、の3条件から選定し た。

冒頭に示すとおり,2004年は集中降雨頻度の増 加により土砂災害が多発した。この背景に台風の 上陸が過去最大数であったことと梅雨前線の停滞 に伴う豪雨が頻発したことが挙げられる。災害実 績の中から,2004年7月12日から13日の新潟・福 島豪雨による降雨イベントを基礎条件に用いる。 この降雨による土砂災害は、ある特定地域に多数 の被害を与えた。新潟県内で崖崩れ、地すべり、 土石流を合わせた347箇所の土砂災害が社会基盤

表 2	暖候期の月最大降水量と24時間降雨極値
	の関係要素

正坦期間	禾始刊		回帰式		
丹現朔间	学即型	相對係級	係数	切片	
	春型・夏型	0.66	0.37	53. 39	
10年	秋型	0.77	0.60	26.68	
	冬型	0.71	0.36	39.91	
	春型・夏型	0.69	0.53	88.10	
30年	秋型	0.80	0.94	38.42	
	冬型	0.67	0.51	67.43	
	春型・夏型	0.64	0.64	121.37	
100年	秋型	0.70	1.19	52.11	
	冬型	0.62	0.64	89.24	

図6 再現期間毎の24時間降雨極値

に被害を与えた¹⁸。また,写真判読から3600箇所 の土砂崩壊が確認された¹⁹⁾。この災害実績を空中 写真による判読結果および土砂災害被害分布図¹⁹⁾ を参考に解像度1 km²による土砂災害分布データ を作成した。モデルに利用する基礎情報の範囲と して土砂災害の集中した新潟県栃尾市に位置する 浅草岳から魚沼丘陵の範囲を利用する。土砂災害 分布図を図7に示す。

浅草岳から魚沼丘陵の近辺の周辺に存在する AMeDAS 観測所は栃尾である。栃尾の2004年7月 12日から13日における最大24時間降雨量は 422mmである。経年の最大24時間降雨量を整理 し,GEV分布の確率分布型,PWM法の母数推定 法を用いて頻度解析を行うと,422mmの24時間 降雨量は,再現期間530年の降雨極値になる。こ の地域は1979年の24時間降雨量216mmを除くと 甚大な集中降雨が認められていない。そのため, 500年を超える長期の再現期間が導かれている。 この24時間降雨量の再現期間500年を基礎情報の 降雨条件に利用したこととなる。

3. 発生確率モデル

発生確率モデルに多重ロジスティック回帰分析 を利用する。多重ロジスティック回帰分析は Framingham offspring study における心疾患のリ スクの算定を目的に Truett らにより開発された解 析手法である²⁰⁾。この解析手法は正規確率密度の

図7 新潟県土砂災害分布と解析対象エリア

分布になじまない二項分布による発生確率を求め る。ここで示される二項分布はある事象に対する 生起の1と0の関係であり、本研究では7月12日 から13日の新潟県見附市に位置する浅草岳から魚 沼丘陵の土砂災害発生を1.土砂災害非発生を0 と設定した。1と0の関係とこの関係を説明する ための変数群をロジスティック曲線で示し、この 曲線を重回帰式で解くことにより多重ロジス ティック回帰分析が成立する。本研究では起伏量 と動水勾配を説明変数に利用し、土砂災害の実例 から多重ロジスティック回帰分析を作成し.発生 確率モデルを構築した。また、発生確率モデルは 地質別に作成し、地質状況に応じた土砂災害への 影響を算定した。地質毎にモデルを作成すること で、地質別の相対的な危険度を提供できる。この モデルから導かれる発生確率はある条件を基に現 象の生起する条件付確率になる。説明変数の変化 に伴い1から0の間に存在する発生確率を導くこ とができる。土砂災害の発生確率モデルは以下の 式(13)~式(16)で示されるが、式(13)はロジット 関数を示す。

$$P = \frac{\exp(Z)}{1 + \exp(Z)} = \frac{1}{1 + \exp(-Z)}$$
(13)

ここで, *P*:発生確率, *Z*:r個の説明変数を合わ せた合成成分であり, *Z*は式(14)の重回帰式で示 される。

$$Z = a + b_1 x_1 + b_2 x_2 \cdots b_r x_r \tag{14}$$

ここで, *a*:切片, *b*:係数, *x*:説明変数である。式 (14)を変換することで自然対数による式(15)が作 成される。この変換はロジット変換と呼ばれる。 なお, ここから合成成分を示す重回帰式の説明変 数を解析にあわせ動水勾配*x*_{hydro}, 起伏量*x*_{relief}にす る。

$$\log\left(\frac{P}{1-P}\right) = a + \beta_h x_{hydro} + \beta_r x_{relief}$$
(15)

ここで、 β_r : 起伏量の係数、 β_h : 動水勾配の係数 である。これを発生確率Pについて変形すると式 (16)の土砂災害発生確率モデルが作成される。

表 3	発生確率モデル	の説明変数($1 \text{ km} \times$	1 km
-----	---------	--------	-----------------------	------

			-	
地 質	項目	動水勾配	起伏量	切片
	係数β	25.99	0.16	- 15. 97
崩積土	有意確率 <i>p</i> 值	0.01	0.03	0.03
	標準化回帰係数	3.25	2.96	-
がかープ	係数β	19.64	0.14	- 19. 29
新 弗 二 术 世 徒 毕	有意確率 p 值	0.01	0.02	0.03
地阻石	標準化回帰係数	2.37	1.96	-
山林一万	係数β	14.31	0.11	- 24. 97
古 弗 二 糸	有意確率 <i>p</i> 值	0.05	0.03	0.03
和们只有	標準化回帰係数	2.15	2.02	-
	係数β	9.31	0.13	- 35. 99
花崗岩	有意確率 <i>p</i> 值	0.04	0.04	0.05
	標準化回帰係数	1.37	1.26	-

$$P = \frac{1}{1 + \exp\left[-\left(a + \beta_h x_{hydro} + \beta_r x_{relief}\right)\right]}$$
(16)

表3に各説明変数に対する係数Bを含むモデルの 詳細をまとめる。説明変数は5%以内の有意確率 ▶値を示し、有意水準5%を満たす。標準化偏回 帰係数の大きさは発生確率に対する説明変数の影 響度を示す。各地質における発生確率モデルの標 準化回帰係数は、動水勾配が起伏量よりも大きい 値であり,降水量の増加が土砂災害の発生を促す ことを示している。図8はモデルに用いられた実 績データと、地質毎の発生確率モデルを起伏量、 動水勾配と発生確率のロジスティック曲線を示し たものである。危険度の高い地質は、曲線の傾き が急であり、小さな説明変数値の上昇に伴い発生 確率が急上昇する。以上の特徴を比較すると崩積 土,新第三系堆積岩,古第三系堆積岩,花崗岩の 順で危険度が示される。この結果は地質の硬軟と 一致する。崩積土と新第三系堆積岩は、動水勾配 の変化に伴い発生確率が急変しており、動水勾配 の変化により急激に危険な状態に遷移する地質で ある。

4. 土砂災害発生確率の解析結果

土砂発生確率の解析結果として,図9に再現期 間10年,30年,100年の発生確率分布を示す。

再現期間10年の結果では,急峻な山岳地を中心 に発生確率90%以上の地域が広く分布する。図9

図8 各地質のロジスティック曲線(解像度1km)

の再現期間10年の分布に示すとおり、北海道の石 狩山地南麓, 恵庭岳南麓, 出羽山地の月山北麓か ら朝日山地, 飯豊山地, 越後山地, 飛騨山地に至 る日本海側における山地群、飛騨山脈南部を中心 にする日本アルプスと称される地域一体, 関東山 地南西麓,紀伊山地南麓,四国山地の剣山南麓は 広い範囲で発生確率90%以上を示した地域であ る。これらは、社会基盤が乏しいため施設の損壊 および犠牲者などの被害が生じにくい地域であ る。しかしながら、活発な土砂生産に伴うダム施 設の貯水容量の減少、山岳交通路の通行止めなど の被害が懸念される。また、中国山地は山裾側の 地域で高い発生確率が集中する。中国山地の山裾 は多数の都市域が分布し、短い周期で土砂災害の 被害の懸念される危険地域である。この地域に含 まれる広島市は犠牲者の認められた多数の災害履 歴をもつ。平成11年6月29日から7月3日に土砂 災害防止法施行の契機になった梅雨前線の豪雨に よる災害がよく知られるが、昭和20年、昭和26 年,昭和42年,昭和57年,平成3年,平成5年に 人的被害を含む土砂災害の発生が記録されてい る。なお広島県は土砂災害危険箇所の多い有数の 都道府県である。

再現期間30年の結果では,再現期間10年の発生 確率90%の地域がやや山裾側に拡大する。そのた め,社会基盤への危険性が増す。また,再現期間 10年で低い発生確率だった山岳地域は再現期間30 年に高い発生確率を示す。この地域は広がりをも たずに点在する。図9の再現期間30年の分布に示 すとおり,北海道の夕張山地,出羽山地北部域の 森吉山周辺,北上山地西麓,阿武隈山地西麓,比 良山地から丹波高地,九州山地といった地域は発 生確率が50%以上上昇した地域である。

再現期間100年の結果では、多くの山地が高発 生確率に変化する。発生確率上昇より土砂災害の 予測される市街地、流域を図9のa)からh)に示 す。a)の盛岡、遠野,b)の本荘、湯沢、c)の桐 生、足利、e)の尾鷲、熊野、h)の大田の市街地 は土砂災害が懸念される。また、d)の九頭竜川上 流域、f)の吉野川上流域、g)の緑川流域の生産 土砂増加が予測される。更に、仙台市に代表され る丘陵を多く含む全国各地の都市にも発生確率上

図9 日本列島の再現期間に対する土砂災害発生確率分布

昇地点が認められる。つまり,再現期間100年の 土砂災害が経済活動に与える影響が増すことを示 している。被害の履歴がなくとも山地に接する市 街地には斜面崩壊の監視や避難体制といった危機 管理が必要である。

図7に示した浅草岳から魚沼丘陵の災害発生地 点の再現期間100年の発生確率を平均化すると 85%である。逆に、この地域の災害発生しない地 域について、発生確率を平均化すると発生確率 26%である。この結果から、災害発生した地域の 発生確率が高くなっており、発生確率の有効性が 定性的に示された。図10は、浅草岳から魚沼丘陵 における平均発生確率と再現期間の関係を示した ものである。2004年の災害時の降雨は再現期間 500年であった。図10において再現期間500年の発 生確率は95%である。

図10 浅草岳から魚沼丘陵における再現期間と 平均発生確率の関係

5. 解像度の影響評価

解像度1km²の発生確率分布図は、土地利用や 道路密度のような社会基盤の数値地理情報との併 用によって、社会リスクの算定を可能にする。そ のため、広域の土砂災害対策の意思決定に貢献で きる。しかし、実際の対策には、更に詳細の対策 位置を議論しなければならない。この議論には現 場踏査やミクロの解像度による危険度評価が必要 になる。また、将来的な対策計画の展開を考慮す れば、解像度1km²の評価はミクロ解像度の結果 も反映された結果でなければならない。そこで、 基礎情報に利用した新潟県を対象に1km×1km と50m×50mの解像度による発生確率の関係を調 べた。以下, 解像度1km×1kmを解像度1km, 解像度50m×50mを解像度50mとする。解像度 50mは個別の土砂災害を解読できる地形情報を 示した解像度である²¹⁾。解像度50mの発生確率モ デルは、解像度1kmの発生確率モデルの基礎情 報として利用した新潟県見附市に位置する浅草岳 から魚沼丘陵の範囲の土砂災害情報を解像度50m の精度で整理することにより作成された。解像度 50mの地形データに数値地図50mメッシュ(発 行:国土地理院)を利用する。モデル式は3章の 式(16)と同様であるが、モデル式における説明変 数の係数が異なる。表4に解像度50mによる発 生確率モデルの説明変数要素を示す。図11に解像 度50mによるモデルに用いられた実績データと、 地質毎の発生確率モデルを起伏量,動水勾配と発 生確率のロジスティック曲線を示した。

表 4	発生確率モデルの説明変数	$(50{\rm m}\times50{\rm m})$	
-----	--------------	------------------------------	--

地 質	項目	動水勾配	起伏量	切片
	係数β	28.69	0.26	- 8.21
崩積土	有意確率 <i>p</i> 値	0.03	0.04	0.05
	標準化回帰係数	2.16	1.76	-
<u> </u>	係数β	23.70	0.14	- 10. 48
利弗二术	有意確率 <i>p</i> 值	0.03	0.03	0.05
和但有	標準化回帰係数	1.99	1.24	-
十位一五	係数β	17.88	0.24	- 10. 48
白	有意確率 <i>p</i> 值	0.05	0.04	0.04
和但有	標準化回帰係数	1.65	1.01	-
	係数β	11.70	0.08	- 30. 97
花崗岩	有意確率 <i>p</i> 值	0.04	0.05	0.04
	標準化回帰係数	0.99	0.89	-

図12は、再現期間100年に対する新潟県の解像 度50mと解像度1kmの土砂災害発生確率分布で ある。図12から、解像度1kmと解像度50mの発 生確率の分布は類似する。双方の解像度ともに、 発生確率80%以上の集中する地域は、朝日山地か ら飯豊山に至る西麓斜面,魚沼丘陵北西麓斜面, 三国山脈北西麓斜面、飛騨山地北麓斜面のいずれ も山岳地である。ただし、部分的ではあるが、解 像度1kmで発生確率40%程度を示すものの、解 像度50mでは発生確率70%以上に上昇する地点 が抽出される。抽出された発生確率の著しい上昇 を示す地点は、図12中に示された A) から D) の 地域であり、主に丘陵部に分布する。A) 村上・ 関川の朝日山地西麓斜面と越後平野の境界の丘 陵, B) 阿賀野川沿いに位置する津川の丘陵, C) 日本海沿い巻から弥彦の角田山および弥彦山周 辺, D) 妙高高原の笹ヶ峰高原である。これらは, 解像度1km を対象にすれば起伏の小さな地域に なるため、いずれのも解像度1kmの低い発生確 率を示した。

図13は、解像度50mによる発生確率を解像度 1kmで平均化したものと、解像度1kmによる発 生確率の関係を示したグラフである。この相関係 数はR=0.94である。また、グラフからみてとれ るように、解像度1kmの発生確率の上昇にあわ せて、解像度50mを平均化した発生確率も上昇 する関係を示す。平均化した解像度50mの発生 確率は、1kmの解像度と概ね同値で示される線形

図12 新潟県の解像度50mと解像度1kmにおける再現期間100年の発生確率分布

関係をもつ。ただし、この解像度の線形関係は広 がりをもち分布し、図13中に示した関係線を境界 にするi)とii)に分類される。領域i)は解像度 1kmの発生確率に対して解像度50mを平均化した 発生確率の方が小さい地域、領域ii)は50m 解像度 の発生確率が著しく大きな地域である。これらの 領域i),ii)と地形の条件を比較すると、i)は山 岳地, ii)は丘陵から平野に分布する。 i)の原因 は、山岳地の解像度1km中に緩傾斜および小さ な起伏を呈する地形を含むため, ii)の原因は、平 野から丘陵の解像度1km中に急傾斜および大きな 起伏を呈する地形を含むためである。解像度50m は微地形を含むため、解像度1kmと比較して多 少の誤差が生じる。なお、図12のA)からD)の地

図13 解像度1kmnと解像度50mの1km平均の関係

域は,図13の領域ii)内に属した関係線と差が大 きく,微地形の顕著な地域と評価できる。

図12と図13から、解像度1kmの発生確率は、平 均化した解像度50mの危険度も概ねふまえた結果 と解釈できる。全球の適用も可能な解像度1km は、気候モデルの利用も可能であり、危険地域を 様々な観点で考察できる。解像度1kmは、解像 度50mの発生確率も反映した解像度であること が解釈されたため危険地域の抽出後の土砂災害防 止対策の配置計画にも支障のない解像度である。 ただし、図12の A)から D) に示す丘陵から平野に 代表される解像度1kmの発生確率よりも高い発 生確率を示す解像度50mには注視すべきである。 これらの検出には、地形分類の付加を考慮する必 要がある。国土数値情報のKS-META-G05-54M データの大分類地形を利用すると、A)とB)は山 麓地, C)は小起伏丘陵, D)は大起伏丘陵, に属 する。図14は、新潟県内の地形分類に対する解像 度1kmと平均化した解像度50mの再現期間100年 の発生確率の関係図である。解像度1kmにおい て、山麓地は平均16%、小起伏丘陵は平均13%、 大起伏丘陵は平均19%,の発生確率を示す。対し て、A)からD)は、解像度1kmで40%以上の発生 確率であり、地形分類と比較をすれば、約20%か ら25%も発生確率が上昇していることになる。こ れら地形の標準偏差は10%程度であるため、地形 分類上で A) から D) は発生確率の卓越した危険地 域と解釈される。また、これら地形の平均と同等 およびそれ以下の発生確率を示す解像度1kmの 地域は、解像度50mに著しい高発生確率の地点

図14 地形分類と発生確率の関係

を含まないことがわかった。地形分類に応じた発 生確率の比較は,対象メッシュに対するミクロ情 報による潜在的な高発生確率地点の存在を抽出で きる。

6. おわりに

地形,地質,24時間降雨極値より導かれた動水 勾配を条件に日本列島全域に対する土砂災害の発 生確率モデルを構築した。その発生確率モデルか ら,再現期間10年,30年,100年の発生確率分布 図を作成し,土砂災害発生確率の時空間的な分布 を把握することができた。この発生確率モデル は、広域の危険地域の抽出に優れており,社会リ スクの算定,地球温暖化による影響も考慮しやす い解像度1kmで評価した。また,この解像度で 構築された発生確率モデルは,個別現象の危険度 も反映した評価であり,土砂防止対策の配置に支 障のない危険領域を抽出できる。本研究から以下 の結論を得た。

- 再現期間10年の土砂災害発生確率では、急峻な山岳地を中心に高い発生確率が認められた。これら地域に存在するダムや道路に被害を与える可能性がある。
- 2)都市域の集中する中国山地の山裾部は、再現 期間10年で高い発生確率を示す地域である。 この結果だけでなく、過去の土砂災害履歴からも多数の被災の多く認められる地域であり、短い周期の土砂災害による被害が懸念さ

れる。

- 3)再現期間10年から30年に変化することで、発 生確率90%の地域がやや山裾側に拡大する傾 向を示した。社会基盤に対する土砂災害の危 険性の増加が懸念される。
- 4)再現期間100年の結果では、発生確率の上昇地 域の拡大が認められた。拡大域には都市や重 要河川沿いの地域も含む。更に、仙台市に代 表される丘陵を多く含む全国各地の都市にも 発生確率上昇地点が分布する。甚大な経済損 失が予測される。
- 5)解像度1kmの発生確率は,解像度50mの発生 確率の情報も反映しており,これらの発生確 率は概ね同値で示される関係をもつ。
- 6) 平野,丘陵の発生確率は、地形分類別の平均 発生確率と比較して危険性を解釈する必要が ある。

土砂災害に対する危険地域の位置や範囲は,専 門知識によって特定されており,その信頼性は高 いものである。しかしながら,発生確率による危 険度は定量的であり,社会リスクの算定に利用で きるメリットをもつ。また,この発生確率は日本 列島全域の地図上に反映できる。したがって,対 策を優先して整備すべき地域の抽出に有用であ る。加えて,降雨分布や地域の状況を精査し,危 険性が高くなる降雨量の基準値を地域毎に示すこ とも可能である。

今後は、広域に対する降雨状況と災害実績の検 証をおこなうことと同時に、降雨極値のみでなく 融雪などを含む降水現象全般を土砂災害発生確率 モデルへ利用する。この結果を用い、現在から将 来にかけて予測される土砂災害発生確率の遷移と 社会リスクを算定し、土砂災害に対する安全な国 土形成の施策について検討する意向である。

謝 辞

本研究の一部は「環境省の地球環境研究総合推 進費(S-4):温暖化の危険な水準及び温室効果ガ ス安定化レベル検討のための温暖化影響の総合的 評価に関する研究」から援助を受けました。ここ に記して謝意を示します。

参考文献

- 1)環境省: IPCC 地球温暖化第3次報告-政策者向 け要約-, pp.91, 2001.
- 2)和田一範・村瀬勝彦・富沢洋介:地域気候モデル を用いた地球温暖化による災害リスク算定の試 み、水工学論文集, No. 48, pp. 457-462, 2004.
- 3) 国土交通省:水害レポート2004 (平成16年度版), http://www.mlit.go.jp/river/saigai/kiroku/suigai2004 /right.html. 2005年5月1日.
- 4)内閣府:平成16年版防災白書,国土印刷局, 2004.
- 5) 榊原弘之・倉本和正・菊池英明・中山弘隆・鉄 賀博己・古川浩平:ラフ集合を用いたデータマ イニングによるがけ崩れ発生要因の抽出に関す る研究,土木学会論文集, No.658, VI-48, pp. 221-229, 2000.
- 6) Temesgen, B., Mohammed, M.U. and Korme, T.: Natural Hazard Assessment Using GIS and Remote Sensing Methods, with Particular Reference to the Landslides in the Wondogenet Area, Ethiopia, physics and Chemistry of the Earth part C: Solar, Terrestrial & Planetary Science, Vol.26, Issues 9, pp.665–675, 2001.
- 7)水田敏彦・瀬尾一大:数値標高モデルに基づく 豪雨による斜面崩壊危険予測-長崎市を事例対 象にして-,自然災害科学, Vol. 19, No. 4, pp. 477-491, 2001.
- 8) Iida, T.: A stochastic hydoro-geomorphological model for sallow landslideing due to rainstorm, CATENA, Vol.34, Issues 3-4, pp.293-313, 1999.
- 9) Ohlmacher, G.C. and Davis. J.T.: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, Vol.69, Issues 3-4, pp.331-343, 2003.
- 東北地方土木地質図編集委員会:東北地方土木 地質図解説書,1988.
- 吉松弘行:山腹崩壊の予測式について、新砂防、 102, pp. 1-9, 1977.
- Richards, L, A., Capillary conduction of liquids through porous mediums, physics, Vol.1, pp.318– 333, 1931.
- 谷 誠:一次元鉛直不飽和浸透によって生じる 水面上昇の特性,日本林学会誌,64(11),pp. 409-418,1982.
- 14) Brutsaert, W.F.: The permeability of a porous medium determined from certain probability

laws for pore size distribution, Water Resources Research, Vol.4, No.2, pp.425-434, 1968.

- 15)沖 大幹・虫明功臣・小池俊雄:地形と風向に よる豪雨時の降雨分布の推定,土木学会論文 集, No.417, Ⅱ-13, pp.199-207, 1985.
- 16) 鈴木善晴・中北英一・池淵周一:標高依存直線 に基づいた降雨分布の地形依存特性の解明,水 工学論文集, No. 45, pp. 301-306, 2001.
- 17)牛山素行・寶 馨: AMeDAS データによる暖候期 降水量と最大1時間・日降水量の関係、水文・水 資源学会誌, Vol. 13, No. 4, pp. 368-374, 2004.
- 18) 国土交通省:平成16年7月新潟・福島豪雨及び 平成16年7月福井豪雨による土砂災害状況, http://www.mlit.go.jp/river/sabo/040726/1.pdf. 2005 年5月1日.
- 19) 山岸宏光・アヤレウルルセゲド・大谷政敬・加藤晃司:土砂災害の調査法とデータベース化に関する研究-2004年7.13新潟中越地域豪雨による同時多発斜面災害-,研究助成事業報告書,日本建設情報総合センター,2004.
- 20) Truett, J.J., Cornfield, J. and Kannel, W.B.: A multivariate analysis of the risk of coronary heart disease in Framingham. J. Chron. Dis. 20, pp.511–524, 1967.
- 神谷泉・黒木貴一・田中耕平:傾斜量図を用いた地形・地質の判読,情報地質, Vol. 11, No. 1, pp. 9–22, 2000.

(投稿受理:平成19年5月7日 訂正稿受理:平成20年1月21日)