

栗山 雅之*・隈元 崇**・関口 春子***・岩田 知孝*

Effects of the Different Earthquake Magnitude Estimates on Strong Ground Motion Simulation for a Long Active Fault – In case of the northern and middle parts of the Itoigawa-Shizuoka tectonic line fault zone as a source fault –

> Masayuki Kuriyama*, Takashi Kumamoto**, Haruko Sekiguchi*** and Tomotaka Iwata*

Abstract

In predicting strong ground motion from a scenario earthquake for a long active fault zone, we need to take into account of multi segment rupture during an event. For this case, two conflicting methods to estimate earthquake magnitude give different source models for the scenario earthquake. In this study, we construct six kinds of characterized source models by combining those two methods with three rupture scenario cases on the Itoigawa-Shizuoka Tectonic Line fault zone. The empirical Green's function method is applied to calculate synthetic ground motions. Obtained peak horizontal velocities from the synthetics are examined by comparison with the empirical attenuation relation. We also discuss variations of peak horizontal velocities among the models. Effect of selection of the two methods on variation of peak horizontal velocities is approximately equivalent to that of the different rupture scenarios.

* 京都大学防災研究所

Disaster Prevention Research Institute, Kyoto University
 岡山大学理学部地球科学科
 Department of Earth Sciences, Okayama University

本論文に対する討論は平成20年11月末日まで受け付ける。

^{***} 独立行政法人産業技術総合研究所 活断層研究センター Active Fault Research Center, AIST

キーワード:複数セグメントの連動,地震規模予測,スケーリング則,強震動シミュレーション,経験的 グリーン関数法

Key words : multi segment rupture, earthquake magnitude estimates, scaling law, strong ground motion simulation, the empirical Green's function method

1. はじめに

将来発生する内陸地殻内地震について震源モデ ルを用いて強震動を精度よく予測するためには、 既往の地震の震源過程の分析結果や活断層研究の 成果を震源モデルの構築手法に反映させる必要が ある。入倉・三宅(2001)や入倉・他(2003)は、 活断層に関係して発生する地震の強震動を予測す るための特性化震源モデルの構築手法をレシピと して提案した。また、文部科学省地震調査研究推 進本部地震調査委員会(2005)は、現状の知見を 活かした震源のモデル化手法、地下構造のモデル 化手法、強震動の計算手法から構成される「震源 断層を特定した地震の強震動予測手法」(以下,推 本のレシピ)をとりまとめている。こうした震源 のモデル化手法は、主として地震学的な研究成果 を背景としている。例えば、地震規模は、震源断 層モデルのコンパイルから得られた震源断層面積 と地震モーメントについての経験式に基づいて設 定される(例えば, Kanamori and Anderson, 1975; Somerville *et al.*, 1999;入倉·三宅, 2001)。

今,複数のセグメントが連動して発生する地震 の地震規模を予測する場合を考える。なお,本研 究でのセグメントは、McCalpin (1996)の behavioral segment (活動セグメント)のことを示 しており,これは、活断層を過去の活動時期,平均 変位速度,平均活動間隔,変位の向きなどから判断 して区分した最小区間である。推本のレシピでは、 各セグメントの断層面積を足し合わせて求めた総断 層面積から経験式を用いて総地震モーメントを算出 し、個々のセグメントに総地震モーメントを算出 し、個々のセグメントに総地震モーメントを配分す る。このとき、連動するセグメントの数が多くなり 総断層面積が大きくなるほど、各セグメントの受け もつ地震モーメントと変位量は大きくなる。一方、 活断層研究の分野では、複数のセグメントの連動を 想定する場合の地震規模について、Characteristic earthquake model (Schwartz and Coppersmith, 1984)の考えを基にする Cascade モデル (Working Group on California Earthquake Probabilities, 1995)による評価が提案されている(粟田, 1999)。 Characteristic earthquake modelの考え方は、野 外計測データやトレンチ調査結果に基づき、活断 層上の任意の地点の断層変位は、一定の再来間隔 と一定の変位量を示すとするものである。すなわ ち、このモデルに基づくと、連動するセグメント の組み合わせが異なった場合にも各セグメントの 変位量は一定であるので、受けもつ地震モーメン トは変化しないことになる。

また、短周期レベルを用いてアスペリティの面 積を推定すると、上述したような2つの考え方を 適用することで、推定される値に違いが生じる。 推本のレシピの手法に従った場合には、 壇・他 (2001)による経験則に従って推定した震源断層全 体の地震モーメントに対する短周期レベルから. 総アスペリティ面積が求められる。一方、活断層 の調査結果に基づく考え方に従えば、各セグメン トの地震モーメントから短周期レベルを求め、セ グメントごとのアスペリティの面積を求めること になる。なお、このモデル化では、各セグメント の地震モーメントと変位量だけでなく、アスペリ ティが受けもつ地震モーメントとすべり量も連動 パターンによらず一定であるという仮定をおいて いる。以上のように連動型地震の規模の推定には 異なる2つの考え方があり、それぞれの考え方に 従うと、違った特性化震源モデルが構築される。 こうした特性化震源モデルの違いは、将来発生す る大地震による被害の軽減を目的とした強震動予 測の結果を左右するため,実際どのような差を引 き起こすのかについて十分に検討される必要があ る。

上述した2つの規模予測手法のうちどちらが適

切であるかの議論を進めるためには、過去数回の 連動型地震の際の変位量分布を破壊の全域に渡っ て網羅的に取得することが必要である。しかし 日本で複数の活断層が連動した場合の地表変位量 分布が得られている例は、1891年の濃尾地震(松 田. 1974) や1930年の北伊豆地震(星野・青木. 1972) など少数に限られ、それらも歴史的には一回 しかない。そのため、変位量分布からは2つの規 模予測手法の適切さを決められない状況にある。 こうしたことを踏まえて、Kuriyama et al. (2005)、 栗山・隈元(2006)や栗山・他(2006)では、1891 年の濃尾地震の強震動評価と震度分布図から2つ の規模予測手法のうちどちらが適切であるかにつ いて議論を行った。具体的には、連動型地震の地 震規模を推定するための2つの手法,アスペリ ティの面積を設定するための2つの手法、3つの 破壊シナリオを組み合わせて12の特性化震源モデ ルを構築して、各モデルについて強震動評価を 行った。さらに合成した強震波形から震度を求め. 村松・小見波(1992)によってまとめられた観測震 度と比較することで、構築した震源モデルの適切 さを検討した。その結果、推本のレシピに従って 想定地震の地震規模を設定し、震源断層に占める アスペリティの面積比を22% (Somerville et al., 1999) としたときに、村松・小見波(1992)の震度 分布図を最も再現する結果が得られた。このよう に,既往の連動型地震については、それぞれの考 え方に基づいた特性化震源モデルを設定して強震 動評価を行い、震度分布図や被害分布図と比較す ることによって、複数のセグメントからなる長大 活断層に対する震源モデル化手法の適切さを検討 することが可能であると考えられる。

本稿では、上記の検討を踏まえ、複数のセグメ ントが連動して発生する地震の規模予測手法とア スペリティの面積の設定手法が異なる2つのモデ ルを構築し、それらの違いが強震動予測結果にも たらす影響について議論することを目的とする。 ここでは、地震調査研究推進本部の長期評価で今 後の地震発生確率が高い長大活断層である糸魚川-静岡構造線活断層帯の想定地震を例にとる。いく つかの破壊シナリオによる強震動波形を経験的グ リーン関数法により計算し,モデルやシナリオご との予測結果を距離減衰式と比較するとともに, 合成波形の最大水平速度振幅の比較等からモデル 化手法の相違による予測結果への影響について考 察する。

2.特性化震源モデルの構築と強震動の 予測手法

2.1 連動型地震の規模とアスペリティの面積 に関する特性化震源モデルの設定方法

複数のセグメントが連動するような地震を想定 し、これまでの地震学と活断層研究の知見に基づ いて, (a) total-L model (t-L model), (b) segment-L model (s-L model) の2つのモデルを構築する。 t-L model は、断層面積と地震モーメントに関す るスケーリング則を震源断層の総面積に対して適 用して総地震モーメントを与える(図1(a))。ま た、震源断層の総アスペリティ面積は、推本のレ シピに採用されている経験則に従って地震モーメ ントから短周期レベルを推定し(壇・他, 2001). これを用いて、アスペリティの等価半径を算出す ることで得る。一方, s-L model では、複数のセ グメントが連動する地震であっても、 個々のセグ メントで認められる変位量は単独で破壊される場 合の変位量と同じであるという考え方に基づく。 さらに, 各セグメントの断層面積とセグメントが 単独で破壊された場合の地震の規模の間に、推本 のレシピに採用されている断層面積と地震モーメ ントの経験的な関係が成り立つものと仮定する。 以上のことを踏まえて、s-L modelを設定した場 合には、断層面積と地震モーメントに関するス ケーリング則を各セグメントに適用して地震モー メントを算出し、それらの単純和で総地震モーメ ントを得る(図1(b))。アスペリティの面積は、 セグメントごとに地震モーメントから短周期レベ ルを推定し(壇・他, 2001), 各セグメントのアス ペリティの等価半径を算出することで得る。な お.t-L model を仮定した場合の地震規模の推定 手法は、推本のレシピで用いられている手法と同 じである。

図1 地震の規模予測手法とアスペリティの面積の設定手法に関する2つのモデルの概念図とそれぞれの モデルを仮定した場合の変位量分布の模式図。(a) total-L model, (b) segment-L model.

2.2 糸魚川 – 静岡構造線活断層帯(北部・中部) のセグメントの設定

糸魚川 - 静岡構造線活断層帯は、全長約150km の活断層帯である。神城断層、松本盆地東縁断層 からなる北部区間では東側隆起の逆断層成分、牛 伏寺断層, 岡谷断層群, 諏訪断層群, 釜無山断層 群からなる中部区間では左横ずれ成分、白州断 層,下円井断層,市之瀬断層群からなる南部区間 では西側隆起の逆断層成分が卓越している(活断 層研究会, 1991)。北部・中部区間の複数の地点で 行われた活動履歴調査の結果は、約1200年前に北 部・中部区間が同時に活動した可能性があることを 示している(松島・伴, 1979;糸静線活断層系発掘 調査研究グループ, 1988; 東郷・今泉, 1988; 奥 村・他, 1994, 1996, 1998)。このように本活断層 帯では、複数のセグメントが連動する可能性があ り、先に述べた2つの地震規模予測手法を適用し て考察することに意義がある。

本研究では,前回のイベントからの経過時間が 牛伏寺断層の平均活動間隔を上回っていることを 踏まえ,将来予測の観点から,牛伏寺断層を含み 前回のイベント時に牛伏寺断層とともに活動した と考えられている区間を対象とした。地震調査研 究推進本部(2002)の同地域を対象とした強震動 評価でのセグメント区分と同様に,北部1セグメ ント(神城断層),北部2セグメント(松本盆地東 縁断層),中部1セグメント(牛伏寺断層),中部 2セグメント(岡谷断層群,諏訪断層群,釜無山 断層群)の4つのセグメントを設定した(図2)。

2.3 特性化震源モデルの設定

特性化震源モデルは、断層全体の形状や想定地 震の規模を示す巨視的断層パラメータ、断層の不 均質性を示す微視的断層パラメータ、破壊開始点 や破壊伝播様式を示すその他の断層パラメータか ら構成される(入倉・三宅,2001)。本研究で考え

図2 糸魚川-静岡構造線活断層帯北部・中部 での想定地震の震源断層の位置と要素地 震の震源メカニズム(F-netによる)。実 線と破線は想定地震の震源断層の地表投 影を示している。黒三角印と黒四角印は 本研究で波形合成を行った観測点を示 す。四角印は、変位スペクトルを求めた 観測点である。3つの星印は、破壊開始 点の位置を示す。

る糸魚川-静岡構造線活断層帯における震源パラ メータは、主として推本のレシピに記述された手 順に従って設定した(**表1,2**)。

まず,糸魚川 - 静岡構造線活断層系ストリップ マップ(下川,1995)や活断層詳細デジタルマッ プ(中田・今泉,2002)に記載された情報を考慮 して,各セグメントの位置を決定した。セグメン トの長さは,本研究で設定したセグメントの位置 を基に,北からそれぞれ26.1km,36.7km,16.0 km,32.0kmとした。また,断層幅は,地震調 査研究推進本部(2002)の評価による地震発生層 の幅と各セグメントの断層傾斜角を参考にして算 出した。その結果,北部で20.2km,中部で13.0 kmとなり,これらの値を用いて各セグメントの 断層面積を得た。このとき,断層の上端深度は, 地震調査研究推進本部(2002)で用いられている 地震発生層の上限の深さと同じ地下4 km と設定 した。

本研究では、連動型地震の規模とアスペリティ の面積の設定に関して、先に述べた2つのモデル 化手法を適用する。t-L modelの地震モーメント は、推本のレシピに基づいて、震源断層全体の面 積に地震スケーリング則を適用して与えた。具体 的には、4つのセグメントの面積を足し合わせた 総断層面積に、入倉・三宅(2001)の提案による Wells and Coppersmith (1994)をコンパイルした 式(1)を用いて地震モーメントを算出する。

 $S = 4.24 \cdot 10^{-11} \cdot M_0^{1/2} (S > 291 \,\mathrm{km}^2) \quad (1)$ S: 震源断層の面積 (km²)

 M_{o} : 地震モーメント (dyn・cm (=10⁻⁷N・m))

想定する地震の地震モーメントは1.99×10²⁰N・m, M_w は7.5となる。これに対し, s-L modelの総地 震モーメントは, 個々のセグメントに地震スケー リング則を適用し, 得られた地震モーメントの和 をとることで算出される。式(1)は断層面積が 291 km²以上の場合に限られるため, この閾値を 下回る中部1セグメントの地震モーメントは, Somerville *et al.* (1999)による式(2)を用いて算 出した。

$$S = 2.23 \cdot 10^{-15} \cdot M_0^{2/3} \ (S < 291 \,\mathrm{km}^2) \qquad (2)$$

このとき,想定地震の総地震モーメントは5.85×10¹⁹N・m, M_W は7.1となる。なお,地震調査研究 推進本部(2002)の評価で設定されている地震モー メントから M_w を求めると,7.4となる。図3に は,式(1)と式(2)の元になったWells and Coppersmith (1994) と Somerville *et al.*(1999) の解析結果とともに,本研究のt-L modelとs-L modelを仮定した場合の地震モーメント値が示さ れている。

次に、それぞれのモデルを仮定した場合のアス ペリティの面積と応力降下量を推定する。推本の レシピでは、アスペリティの面積を推定する際に、 短周期レベルを用いる方法と入倉・三宅(2001)が 提案した、震源断層全体に占めるアスペリティの

		モーメントマグニチュード	7.5				
	Ū,ــــــــــــــــــــــــــــــــــــ	総断層面積(km ²)	1893				
		総地震モーメント (N・m)	1.99E+20				
		短周期レベル (N·m/s ²)	3. 10E + 19				
E		震源断層全体の平均応力降下量(MPa)	5. 90				
	兄 内	セグメント名	North1	North2	Middle1	Middle2	
見た	震	走向 (degrees)	7	343	338	319	
源		傾斜角 (degrees)	40	40	90	90	
	生	すべり角 (degrees)	90	90	0	0	
		すべり方向	逆断層	逆断層	左横ずれ	左横ずれ	
		長さ (km)	26.1	36.7	16.0	32.0	
		幅 (km)	20.2	20.2	13.0	13.0	
		面積 (km ²)	527	741	208	416	
	アスペリティ	地震モーメント (N・m)	5.51E+19	9. 18E + 19	1.37E+19	3.86E+19	
德		面積 (km ²)	261	367	103	206	
視		平均すべり量 (cm)	6.47E+02	7.67E+02	4.06E + 02	5.75E+02	
的		平均応力降下量(MPa)	11.9				
源特性	背景領域	地震モーメント (N・m)	5.80E+17	9.80E+17	1. 30E + 17	4. 10E + 17	
		面積 (km ²)	266	374	105	210	
		平均 すべり 量 (cm)	6.73	8.09	3. 83	6.03	
		実効応力 (MPa)	0.099	0.10	0.078	0.087	
		破壞開始地点	case1-case3				
	20	破壊開始地点の深さ方向の位置	アスペリティの下部に設定				
1	し	破壊形態	放射状に伝播				
'		破壊伝播速度(km/s)	2.5				

表1 total-L model を仮定した場合の震源パラメータ

図3 震源断層面積と地震モーメントの経験的関係。実線と破線は、それぞれ Somerville *et al.* (1999)と入倉・三宅(2001)の提案に従って Wells and Coppersmith (1994)の解析結果から得られた経験式を示す。

	モーメントマグニチュード	7.1					
	総断層面積 (km ²)	1893					
	総地震モーメント (N・m)	5.85E +19					
	短周期レベルの総和 (N・m/s ²)	4.86E +19					
	セグメント名	North1	North2	Middle1	Middle2		
巨	走向 (degrees)	7	343	338	319		
倪	傾斜角 (degrees)	40	40	90	90		
震	すべり角 (degrees)	90	90	0	0		
旅	すべり方向	逆断層	逆断層	左横ずれ	左横ずれ		
性	長さ (km)	26.1	36.7	16.0	32.0		
	幅 (km)	20.2	20.2	13.0	13.0		
	面積 (km ²)	527	741	208	416		
	地震モーメント (N・m)	1.55E+19	3.06E+19	2.85E+18	9.63E+18		
	短周期レベル (N·m/s ²)	1. 32E + 19	1.66E+19	7.51E+18	1.13E+19		
	平均応力降下量(MPa)	3.11	3.69	2.31	2.76		
P	地震モーメント (N・m)	6. 53E + 18	1.62E+19	8. 10E + 17	3. 47E + 18		
人 微 ペ	面積 (km ²)	111	196	29.6	75.0		
視テ	平均すべり量 (cm)	1.81E + 02	2. $55E + 02$	8.48E+01	1.43E+02		
的 / 震 イ	平均応力降下量(MPa)	14.7	13.9	16.3	15.3		
源書	地震モーメント (N・m)	8. 93E + 18	1.44E+19	2.04E+18	6. 16E + 18		
行 月 性 景	面積 (km ²)	416	545	178	341		
領	平均すべり量 (cm)	6.64E + 01	8.16E+01	3.54E + 01	5.59E + 01		
现	実効応力(MPa)	2.5	2.0	2.8	2.5		
	破壞開始地点	case1-case3					
その	破壊開始地点の深さ方向の位置	アスペリティの下部に設定					
他	破壊形態	放射状に伝播					
	破壞伝播速度(km/s)	2.5					

表2 segment-L model を仮定した場合の震源パラメータ

総面積の比, 22% (Somerville et al., 1999) を用 いる手法が示されている。短周期レベルを用いる 手法では、震源断層長が長大な場合に、地震の規 模が円形破壊面を仮定しない式(1)から推定さ れるのに対し、アスペリティの面積や応力降下量 は、円形破壊面を仮定して推定されることに問題 がある。しかし、震源断層長が長大な場合の内陸 地殻内地震の観測事例が少ないことから, 短周期 レベルを用いる手法が有効な範囲については明確 にされていない。一方, 22% (Somerville et al., 1999)という面積比を用いる手法では、アスペリ ティの応力降下量は,平均応力降下量,震源断層 に占めるアスペリティの面積比. アスペリティの 応力降下量の関係を示した Madariaga (1979)の 式に, Fujii and Matsu'ura (2000) による平均応力 降下量(3.1MPa)を代入することで推定するとし ている。この場合,アスペリティの応力降下量は 地震の規模によらず一定となる。しかし,Fujii and Matsu'ura (2000)で示された平均応力降下量 は、断層幅15kmの横ずれ断層を設定して求めら れた値であり、逆断層と横ずれ断層が連動すると した本研究には適用できない可能性がある。そこ で、本研究では、短周期レベルを用いてアスペリ ティの面積を推定し、さらにアスペリティの応力 降下量を求める手法をt-L model、s-L modelの両 方で用いることとした。短周期レベルの算出に は、次式(3)のような壇・他(2001)による地震 モーメントと短周期レベルの経験的関係を用い る。

 $A = 2.46 \cdot 10^{17} \cdot M_{\circ}^{1/3} \tag{3}$

A: 短周期レベル (dyne・cm/s² (=10⁻⁷N・m/s²))

式(3)から得られた短周期レベルと Boatwright (1988) より導出される式(4)を用いて、アスペリ ティを円形と仮定した場合の等価半径を算出する。

 $r_a = (7 \pi / 4) \cdot (M_o / (A \cdot R)) \cdot \beta^2$ (4) $r_a : アスペリティの面積に対する等価半径 (km)$ R : 震源断層の総面積に対する等価半径 (km) $\beta : 震源域の S 波速度3.46 km/s$

等価半径から総アスペリティ面積を算出すると、 震源断層に占めるアスペリティの面積比は約49% となる。Somerville et al. (1999) では15の内陸地 殻内地震が解析されており、そのうち、1983年 Borah Peak 地震での震源断層に占めるアスペリ ティの面積比は40%で、この比は、Somerville et al. (1999) で解析された地震の中では最大であ る。t-L model を仮定し、アスペリティの面積の 推定に短周期レベルを用いた場合に得られる49% という値は、こうした事例より大きな値となって いる。t-L model では、このように求められたア スペリティの面積比を個々のセグメントの面積に 乗じて、 セグメントごとのアスペリティ 面積とす る。

一方, s-L model では、

式(3)と式(4)を各 セグメントについて適用し、セグメントごとにア スペリティ面積を算出する。各セグメントで算出 されたアスペリティ面積の和から総アスペリティ 面積を求めると、震源断層に占めるアスペリティ の面積比は約22%となる。

アスペリティの応力降下量は, Boatwright (1988)に基づいた次の式(5)を用いることによっ て算出する。

 $\Delta \sigma_{a} = (7/16) \cdot M_{o}/(r_{a}^{2} \cdot R)$ (5) $\Delta \sigma_{a} : アスペリティの応力降下量 (MPa)$

t-L model では震源断層全体に対するアスペリ ティについて, s-L model では, セグメントごと のアスペリティについて式(5)を適用した。求め られた応力降下量はそれぞれ11.9MPa, 13.9-16.3MPaとなった。また, 背景領域の実効応力に ついては, 推本のレシピに従って2つのモデルと もセグメントごとに与えた。

微視的断層パラメータのひとつであるアスペリ

ティの位置は、活断層調査から得られた1回の地 震イベントによる変位量分布、もしくは平均変位 速度分布を参考に設定する(地震調査研究推進本 部、2005)。平均変位速度分布を提供する研究結 果のひとつとして、活断層詳細デジタルマップ (中田·今泉, 2002) が挙げられる。活断層詳細デ ジタルマップ(中田・今泉, 2002)は、地震の繰 り返しによって形成された変動地形を空中写真か ら判読し、活断層の位置や断層変位の情報をデー タベース化したものである。本研究では、活断層 詳細デジタルマップでまわりより顕著に大きい平 均変位速度を示す箇所を基準にアスペリティの水 平位置を決めた。なお、中部1セグメントについ ては、活断層詳細デジタルマップ(中田・今泉、 2002) で、谷の屈曲といった左横ずれを示す変位 は確認されているが、それらの変位基準の年代が 記述されていないために水平方向の平均変位速度 を得ることができなかった。そのため、中部1セ グメントでは鉛直方向の平均変位速度分布を参考 にして,水平位置を与えた。設定したアスペリ ティの水平位置が、地質調査所発行の糸魚川 - 静 岡構造線活断層系ストリップマップ(下川・他, 1995)の変位量分布や、写真測量から平均変位速 度分布の推定を試みた松多・他(2006)や澤・他 (2006)の結果と矛盾していないことも確認した。 アスペリティの深さ方向は、その上端がセグメン トの上端に接するものとし、各セグメントに1つ のアスペリティを配置した(図4)。

断層の破壊シナリオとしては、アスペリティの 位置は固定し、破壊開始点をいくつかのケースと して設定した。破壊開始点の設定には、活断層の 幾何形態と破壊開始点及び破壊の進行方向を関連 付けた中田・他(1998)の活断層分岐モデルを適 用する。破壊開始点が北部1セグメントの北端と する場合をケース1、中部1セグメントの北端と する場合をケース2、中部2セグメントの南端と する場合をケース3とする3つの場合を設定し た。破壊開始点の深さについては3つのケースで それぞれt-L modelを仮定した場合のアスペリ ティの下端の深さにあわせて、13.3~15.1kmと 設定した。 (a) Horizontal average slip rate (Nakata and Imaizumi, 2002)

 図4 活断層詳細デジタルマップ(中田・今泉, 2002)による対象セグメントに沿う平均 変位速度分布データと特性化震源モデル。(a)水平方向の平均変位速度分布,(b) 垂直方向の平均変位速度分布,(c) 各セグメントの特性化震源モデル。

その他の断層パラメータについても推本のレシ ピに従って設定した。S波速度は3.46 km/sとし, 平均破壊伝播速度は,Geller (1976)に基づいて S波速度の0.72倍の2.5 km/sとした。各セグメン トの破壊様式はそれぞれの破壊開始点から同心円 状に破壊が進行すると仮定する。最初の破壊開始 点を含まないセグメントの破壊開始点は,最も早 く破壊が近傍まで到達する点とする。隣り合って 接合したセグメントの場合,その破壊時間遅れ は,平均破壊伝播速度で与える。セグメントの間 が離れている場合の破壊時間遅れは,上述の時間 に加えてセグメント間のS波による伝播時間を考 慮した。

2.4 強震波形シミュレーション

強震波形の合成は経験的グリーン関数法 (Irikura, 1986)を用いて行った。経験的グリーン 関数法は、想定震源域やその周辺で発生した小規 模、中規模地震の波形をグリーン関数として用い ることで、大地震の波形を合成する手法である。 この手法の利点は、小地震の波形記録に、想定震 源域から観測点までの伝播経路特性と評価地点近 傍の地盤増幅特性による影響が含まれていること にある。一方,経験的グリーン関数法を用いた波 形合成は、実地震記録が得られている評価地点に 限られる。1995年の兵庫県南部地震以降, 強震観 測網 K-NET (Kinoshita, 1998), 基盤強震観測網 KiK-net (Aoi et al., 2000) が全国にそれぞれおよ そ1000ヶ所、700ヶ所という密度で配備されてき た。こうした観測網の広がりにより、経験的グ リーン関数として用いることが可能な地震動記録 が多くの観測点で得られるようになってきてい る。

経験的グリーン関数法を内陸地殻内地震の地震 動の再現に用いた例として,1995年兵庫県南部地 震に対しては,釜江・入倉(1997),Kamae and Irikura (1998),山田・他(1999),2000年鳥取県 西部地震に対しては,池田・他(2002)などがあ げられる。これらの研究では,余震記録を経験的 グリーン関数として用いて強震動シミュレーショ ンを行っている。こうした研究結果から,適切な 小地震の波形記録を取得し,小地震と大地震の震 源パラメータ・震源スペクトルの相似則を適切に 設定すれば,精度の高い地震動の再現が可能であ ると考えられる。

一方,経験的グリーン関数法を内陸地殻内地震 の強震動予測に応用した研究事例として,岩田・ 三宅(2004)がある。岩田・三宅(2004)では, 琵琶湖西岸断層系北部を震源とする地震の強震動 波形を想定震源域で起きたM5クラスの地震記録 を用いて合成し,予測震度分布図を作成してい る。また,合成した加速度・速度波形の振幅の最 大値を距離減衰式から得られる経験的な値と比較 することによって予測結果を検証している。

本研究で対象とする糸魚川 - 静岡構造線活断層帯 の北部区間と中部区間は、総延長が100km 以上あ り、その走向方向に沿って断層の変位様式や断層面 の傾斜方向が異なる(地震調査研究推進本部、 1996)。そのため、経験的グリーン関数として2つ の小地震の波形記録を用いることとした。まず、東 傾斜の逆断層成分が卓越する北部1および北部2の セグメントについては、1999年1月28日に長野県中 部で発生した Mr4.7の地震を用いる。また、左横ず れ成分が卓越する中部1および中部2のセグメント については、2005年5月5日に山梨県中西部で発生 した M₁3.8の地震を用いることとした。これらの小 地震の震源メカニズム解は F-net によって決められ ており(福山・他, 1998;広帯域地震観測網 F-net, http://argent.geo.bosai.go.jp/freesia/index-j.html), それを参考にすると、1つの節面はそれぞれのセ グメントの断層面と対応している。また、2つの 小地震の地震モーメントは、M₁4.7の地震で 1.17×10¹⁶N・m, M_J3.8の地震で1.78×10¹⁴N・m と求められている。

経験的グリーン関数としてこれらの小地震波形 が適切であるかは、K-NETのボーリング情報か ら表層近くまでS波速度が大きくサイト特性が小 さいと考えられる観測点で記録された小地震の波 形を用いて震源距離1 kmの点で観測されたとす る変位振幅スペクトルを求め、ω-2スペクトルモ デルに沿うかどうかで確認した。観測点での変位 振幅スペクトルは.S波到達の0.5s前から10s間 の加速度波形を切り出してフーリエ変換し、水平 2成分の加速度スペクトルをベクトル合成した 後、周波数領域で積分して算出した。さらに、距 離減衰とQ値の効果を補正し、得られた変位振幅 スペクトルを地表の増幅率で除することで、震源 距離1 km での変位振幅スペクトルを求めた。こ のとき、Q値は、佐藤・他(1994)によって求め られている式を用い、地表の増幅率は2と仮定し た。一方,参照とするω⁻²スペクトルモデルの形 状を決めるには、変位振幅スペクトルのフラット レベルとコーナー周波数を与える必要がある。フ ラットレベルは, F-net の地震モーメントを用い て岩田・入倉(1986)に示されている式から求め た。その結果, M14.7の地震とM13.8の地震のフ ラットレベルは、それぞれ5.0×10⁻¹ cm・s. 8.0×10⁻³ cm·s となった。一方、コーナー周波数 は、クラック半径とコーナー周波数の関係を示し

た Brune (1970), Brune (1971) による式(6)か ら算出した。ここで、小地震のクラック半径は、 式(2)の経験式を小地震の地震モーメントまで外 挿することで断層面積を得て、円の公式から求め た。 $M_{\rm J}4.7$ の地震と $M_{\rm J}3.8$ の地震のコーナー周波 数は、それぞれ9.8×10⁻¹Hz、4.0Hz となった。

 $f_{c} = 0.37 \cdot \beta / R$ (6) $f_{c} : コーナー周波数 (Hz)$ R : クラック半径 (km)

図5には、 $M_{J}4.70$ 地震ではNGN005(白馬)、 $M_{J}3.80$ 地震ではNGN020(伊那)で観測された 波形から求めた震源距離1kmでの変位振幅スペ クトルと ω^{-2} スペクトルモデルが示されている。 図5が示すように、小地震の変位振幅スペクトル は、本研究で強震動波形を合成する周波数帯(0.5-10Hz) で ω^{-2} スペクトルモデルに沿っていること が確認された。

このとき、小地震の静的応力降下量は、Eshelby (1957) のクラックモデルを仮定した式を用いて、 北部の $M_{J}4.7$ の地震、中部の $M_{J}3.8$ の地震でとも に2.31 MPa となる。ライズタイムについては、 Somerville *et al.* (1999) による以下の式(7)を小 地震の地震モーメントまで外挿し、 $M_{J}4.7$ の地震、 $M_{I}3.8$ の地震でそれぞれ、0.10s、0.02s とした。

小地震の矩形断層サイズは、式(2)の経験式を用 いて求めた小地震の断層面積から、小断層を正方 形と仮定し、北部の M_J 4.7の地震と中部の M_J 3.8 の地震でそれぞれ2.3×2.3km²,0.6×0.6km²と設定 した。波形合成の際には、小地震の波形に対して 0.5-10Hzのバンドパスフィルター処理と推本の レシピに従い、鶴来・他(1997)の6Hzの高周波 限界(f_{max})を仮定したフィルター処理を行った。

経験的グリーン関数法では、震源パラメータの 相似則と震源スペクトルの相似則に基づいて波形 合成を行うため、大地震の地震モーメント(*M*_o) と小地震の地震モーメント(*M*_o)の間に以下の式 (8)を満たしている必要がある。

----- ω⁻² model

図5 フーリエ変位振幅スペクトル(実線)とω²スペクトルモデル(破線)の比較。(左)NGN005(白馬) で観測された M.4.7の地震記録から求めた震源距離1kmでの変位振幅スペクトル,(右)NGN020(伊 那)で観測された M.3.8の地震記録から求めた震源距離1kmでの変位振幅スペクトル。

 $M_{\rm o}/M_{\rm oe} = c \cdot NL \cdot NW \cdot NT \tag{8}$

- c : 大地震と小地震の応力降下量比
- NL : 波形合成における走向方向(長さ)の重 ね合わせ数
- NW:波形合成における傾斜方向(幅)の重ね 合わせ数
- *NT* : 波形合成におけるライズタイムの重ね合 わせ数

(8)式の大地震の地震モーメント(M_o)を各セ グメントでのアスペリティの地震モーメント (M_{ou}),背景領域の地震モーメント(M_{ob})で置き 換え,アスペリティと背景領域のそれぞれについ て式(8)が成り立つものとする。アスペリティの 応力降下量比は,アスペリティの応力降下量を小 地震の静的応力降下量で割ることで求めた。一 方,背景領域における応力降下量比は,背景領域 の実効応力を小地震の静的応力降下量で割ること で求めた(**表**3)。走向方向(長さ)の重ねあわせ 数と傾斜方向(幅)の重ねあわせ数の積(NL×NW) は,大地震の断層面を小地震の断層面で分割した ときの個数を表している。ここでは,前節で求め たアスペリティと背景領域を小地震の断層面で分 割することにより,各セグメントについて,アス ペリティと背景領域の*NL×NW*の値を求めた。 これらのパラメータを(8)式に代入することで, アスペリティと背景領域のそれぞれのライズタイ ムの重ね合わせ数(*NT*)を得た(表3)。求めた*NT* に小地震のライズタイムを乗じたものを大地震の ライズタイムとした。

入倉(1989)は、大地震の断層面を同じサイズ の小断層で分割する場合に、計算上各小断層の破 壊開始時刻の時系列により,見かけ上の周期性が 合成波形に生じると指摘している。また、入倉 (1994) や rikura and Kamae (1994) は、重ねあ わせ数を増加させた場合に、合成した地震動の変 位スペクトルの振幅が、想定地震と小地震のコー ナー周波数の間でω-2スペクトルモデルに対して 落ち込むことを示している。本研究の場合、観測 点 NGN020(伊那) で予察的に波形合成を行った ところ、中部1セグメントと中部2セグメントで 合成された地震動の変位スペクトルの振幅にω⁻² スペクトルモデルに対する落込みが認められた。 入倉(1989)は、こうした現象が、断層面上の破 壊伝播速度に空間的変化を与えることで取り除か れるとしている。そこで,大地震の断層面上に配 置された各小断層の破壊開始時刻を乱数によって 変動させる手法を用いて(例えば, Irikura and Kamae, 1994), 重ねあわせ数の増加による振幅 スペクトルの落ち込みを回避した。

以上のように設定した各パラメータと小地震の 波形記録を用いることで,糸魚川 - 静岡構造線活 断層帯周辺の11観測点(表4)で、地震の規模予 測手法とアスペリティの面積の設定手法が異なる 2つのモデルと3つの破壊シナリオ(ケース)を 組み合わせた6つの特性化震源モデル(モデル ケース)について強震波形シミュレーションを 行った。なお、各小断層の破壊開始時刻にゆらぎ

			North1	North2	Middle1	Middle2
厚沢	震原	大地震と小地震の断層面の長さの比	11	16	27	53
团属	断	大地震と小地震の断層面の幅の比	9	9	22	22
1	アスペリテ	走向方向の重ねあわせ数	7	10	19	38
		傾斜方向の重ねあわせ数	7	7	15	15
node		ライズタイムの重ねあわせ数	18	22	52	73
-L -	1	応力降下量比	5.	15	5.15	
total-	背景領域	ライズタイムの重ねあわせ数	23	26	70	103
		応力降下量比	0.043	0.043	0.034	0.037
	アスペリティ	走向方向の重ねあわせ数	5	9	9	23
del		傾斜方向の重ねあわせ数	4	4	9	9
segment-L mc		ライズタイムの重ねあわせ数	4	6	8	14
		応力降下量比	6.37	6.02	7.04	6.63
	背景領域	ライズタイムの重ねあわせ数	9	13	18	34
		応力降下量比	1.1	0. 88	1.2	1.1

表3 各モデルについての大地震と小地震の震源パラメータの比

表4 評価に用いた観測点の情報

観測点コード	観測点名	緯度(degrees)	経度(degrees)	標高 (m)	断層最短 距離(km)
AIC010	TSUKUDE	34.9760	137. 4236	525	125.2
GIF007	TAKANE	36.0378	137. 4861	995	47.6
GIF018	NAKATSUGAWA	35. 4887	137.5000	320	79.9
NGN013	AZUMI	36. 1833	137.7852	730	16.9
NGN014	KOUMI	36.0956	138. 4844	857	31.7
NGN016	FUJIMI	35. 9151	138. 2421	970	4.4
NGN017	NARAKAWA	35. 9748	137.8255	927	22.4
NGN020	INA	35. 8282	137.9532	636	24.5
NGN021	KOMAGANE	35. 7304	137.9341	679	32.8
NGN022	NAGISO	35. 6079	137.6125	451	63.5
NGN024	IIDA	35. 5232	137. 8374	539	54.6

を与えるために用いた乱数の予測結果への影響を 考慮して、シミュレーションを1モデルケースに 付き10回行った。

結果と考察

得られた予測結果を距離減衰式(司・翠川. 1999) との比較から検証した後、合成波形の最大 水平速度をモデル間で比較した。次に、破壊シナ リオが予測結果にもたらす影響について調べるた めに、合成波形の最大水平速度をケース間で比較 した。最後に、合成波形から求めた震度の分布図 を示すとともに、地震調査研究推進本部(2002) の強震動予測結果と本研究の予測結果を比較し た。図6に、合成波形の一例として、中部2セグ メントの南端に位置する観測点NGN016(富士見) での加速度・速度の時刻歴波形を示す。図6に示 した数値は、時刻歴波形の最大加速度・最大速度 である。NGN016(富士見)では、用いる乱数に よって非常に大きな最大加速度が予測される場合 もある。本研究では、実体波(S波)の遠地項に 対する経験的グリーン関数法を用いている。この 場合、震源のごく近傍では、計算される地震動の 振幅がやや過大に評価されることが大西・堀家 (2004)で指摘されている。NGN016(富士見)は 震源断層面までの最短距離が4.4kmであり、他 の観測点に比べて震源断層のごく近傍に位置し、 図6に示されたような大きい最大加速度を持つ波 形が求められた可能性がある。後述するように、 予測結果についての議論で用いる最大速度は既往 の距離減衰式からみて妥当であり、大きな最大加 速度は高周波数の波によるものであると考えられ る。経験的グリーン関数法は線形範囲の波形予測 法なので、実際の強震時に起きると考えられる表 層地盤の非線形応答などにより、予測振幅値ほど 大加速度にはならないと考えている。

3.1 予測結果の検証とモデルの違いが予測結 果にもたらす影響

予測結果の検証を行うために,距離減衰式(司・ 翠川,1999)との比較を行った。各観測点のモデ ルケースごとの最大水平加速度・最大水平速度は, シミュレートした合成波形の水平2成分の最大振 幅のうち大きい方とした。距離減衰式との比較を 行う際には、10回のシミュレーション結果の最大 水平加速度・最大水平速度の平均値を用いた。最 大水平加速度と距離減衰式の比較を行った結果、 3つのケースともに、半数の観測点について距離 減衰式のばらつき1σの上側に外れており、最大 水平加速度の平均値はやや過大評価となってい る。前述したように、本研究では表層地盤の非線 形応答を考慮しておらず、予測した最大水平加速 度が過大評価の可能性がある。そこで、最大水平 加速度よりも地盤の非線形の影響が小さいと考え られる最大水平速度と距離減衰式(司・翠川、 1999)の比較から、予測結果の妥当性を調べる。

図7には、合成波形の最大水平速度と距離減衰 式が示されている。司・翠川(1999)の距離減衰式 から算出される最大水平速度は、平均S波速度 600m/s相当の地盤での値である。一方、本研究で は、地表での強震波形を合成している。そのため、 合成波形の最大水平速度をその地点の表層地盤に よる地盤増幅率で除することで平均S波速度 600m/s相当の地盤での値に換算した。本研究と同 じ地域を対象とした地震調査研究推進本部(2002) の強震動評価では、表層の地盤増幅率の評価に松 岡・翠川(1994)の手法が適用されている。これに は、約1km メッシュごとにデータベース化された 国土数値情報から微地形区分を行い、微地形区分 と表層30mの平均S波速度及び地盤増幅率の対応 が示されている。本研究でも、同様の手法で算出 された約1 km メッシュ単位の地盤増幅率を用い た。距離減衰式との比較の結果, s-L modelの場合 には、断層最短距離が40kmを超える観測点で、最 大水平速度が距離減衰式のばらつき+1σの上側に やや外れる場合もあった。しかし、t-L model、 s-L model を仮定した両方の場合で、最大水平速 度は概ね距離減衰式のばらつき ±1σの範囲内に 収まり、本研究の予測結果は経験的な地震動の距 離減衰のばらつきの範囲内にあるといえる。

NGN020(伊那) で得られた最大水平速度は, モデルケースの違いによらず,距離減衰式のばら つき-1σの下側に外れている。松岡・翠川(1994) の微地形区分では、NGN020(伊那)が含まれる メッシュは谷底平野と分類され、そのメッシュの 表層30mの平均S波速度は約260m/sと算出され る。このとき、表層30mの平均S波速度と地盤増 幅率の関係式(松岡・翠川、1994)を用いて、平 均S波速度から地盤増幅率を求めると1.7となる。 一方、K-NETによるPS検層結果を地下30mまで 外挿して平均S波速度を求めると約600m/sと見 積もられる。この場合に,松岡・翠川(1994)の 関係式を用いて地盤増幅率を求めると1.0となる。 これは,本研究で用いている微地形区分と表層 30mの平均S波速度及び地盤増幅率の関係から求 めた約1 kmメッシュ単位の地盤増幅率よりも顕 著に小さい。そのため,NGN020(伊那)では,

図6 NGN016(富士見)で合成された各モデルケースの加速度波形と速度波形。図に記した数字は、波形の最大加速度(cm/s²)・最大速度(cm/s)を示している。

平均S波速度600m/s 相当の地盤での最大水平速 度が小さめに推定され、距離減衰式から-1σ以 上はずれた可能性がある。NGN020(伊那)を除 く10観測点についても、K-NETのPS検層結果か ら表層30mの平均S波速度を推定した。得られた 表層30mの平均S波速度に松岡・翠川(1994)の 関係式を適用して求めた地盤増幅率と微地形区分 から求めた地盤増幅率の比をとると、0.7-1.4の 範囲であった。

次に, 地震の規模予測手法とアスペリティの面

積の設定手法が異なる2つのモデルの違いが予測 結果にもたらす影響をみるために、合成波形の最 大水平速度について比較を行った。図8には、各 観測点の合成波形の最大水平速度をケースごとに 示している。これによると、どのケースについて もt-L modelを仮定した場合の最大水平速度は、 s-L modelの場合の最大水平速度と同程度か、それ よりも大きくなっている。ここで、ある観測点での 合成波形の最大水平速度について、破壊シナリオを 共通にしたときのs-L modelに対するt-L modelの

----- Standard deviations for the attenuation relation

図7 合成波形の最大水平速度と距離減衰式(司・翠川, 1999)との比較。(a) total-L model,(b) segment-L model。合成波形の最大水平速度は表層地盤による増幅の影響を補正し、平均S波速度600 m/s 相当 の地盤上での値に変換している。破線は、距離減衰式のばらつき ±1σを示している。

(a) total-L model

[□] total-L model
△ segment-L model

図8 total-L model と segment-L model を仮定 した場合の各観測点での合成波形の最大 水平速度の比較。

比をとったものをモデルケース比とする。合成波 形のモデルケース比は、10回のシミュレーション の平均値として求める。11観測点、3つの破壊開 始シナリオについてシミュレートした合成波形か らモデルケース比を求め、11観測点での平均をと ると、ケース1のとき1.1、ケース2とケース3 のとき1.2であった。t-L modelを仮定した場合の 地震モーメントは、s-L modelの場合より3.4倍大 きい。しかし、設定されたアスペリティの応力降 下量はs-L modelのほうが大きく(表1,2),この 影響によって、予測結果のような最大水平速度の 違いが生じたと考えられる。また、観測点ごとに 見た場合には、観測点NGN020(伊那)で、ケー ス2と3のときに、モデルケース比が1.4と最大 になる。

地震規模が異なることで最大水平速度にどの程 度の違いが生じるのかをみるために,t-L model と s-L modelを仮定した場合にそれぞれに設定さ れる M_w から距離減衰式(司・翠川, 1999)を用い て各観測点での最大水平速度を求める。t-L model と s-L modelを仮定した場合の M_w はそれぞれ 7.5,7.1である。本研究では、 M_w 7.5と仮定した ときに距離減衰式から計算される最大水平速度を M_w 7.1の場合の最大水平速度で割って比を求め、 この比を経験的な最大水平速度比(経験的な PGV 比)として定義した。観測点ごとに経験的な PGV 比を求めて、それらの平均をとると、1.4 (標準 偏差:0.12)という比が得られた。

設定した地震規模の違いがモデルケース比の値 にもたらす影響を打ち消すために. モデルケース 比を距離減衰式から求めた経験的な PGV 比で割 ることで正規化した。図9は、正規化したモデル ケース比を断層最短距離に対してケースごとにプ ロットしたものである。図9によると、正規化さ れたモデルケース比が、各ケースについてほとん どの観測点で1より小さく、3つのケースでほぼ 同じようなレベルを示している。これは、合成波 形のモデルケース比が距離減衰式から求めた経験 的な PGV 比に比べて系統的に小さいことを示して いる。t-L modelを仮定した場合の平均S波速度 600m/s 相当の地盤での最大水平速度は、距離減衰 式から求まる最大水平速度に対して,平均値とし てケース1で1.3倍、ケース2で1.2倍、ケース3 で1.1倍大きく評価されている。また, s-L model の場合には、Mw7.1のときの距離減衰式から求ま る最大水平速度と比べて,平均値としてケース1 で1.6倍、ケース2で1.4倍、ケース3で1.3倍大 きくなる。このことから. s-L model を仮定した 場合に予測される最大水平速度が、t-L modelの 場合と比べて、距離減衰式(司・翠川、1999)に

図9 正規化されたモデルケース比の断層最短 距離に対するプロット。合成波形のモデル ケース比を距離減衰式 (司・翠川, 1999) より求めた経験的な PGV 比で正規化して いる。エラーバーは, 10回のシミュレー ション結果の標準偏差を示す。PGV_{tL}と PGV_{sL}は, t-L model, s-L modelを仮定し た場合の合成波形の最大水平速度を示し ている。また、PGV_{MW7.5}、PGV_{MW7.1}は、 M_{W7.5}、M_{W7.1}としたときに距離減衰式から 計算される最大水平速度を示している。

対して系統的に大きく評価されることが分かる。 松島・川瀬(2002)では、速度波形の最大値がす べり速度関数の最大値に依存することが示されて

おり、中村・宮武(2000)ではすべり速度関数の 振幅が応力降下量に関係するとしている。こうし たことから、本研究の結果には、2つのモデルを 仮定した場合に設定されるアスペリティの応力降 下量の違いが影響していると考えられる。長大断 層で発生する地震のアスペリティの応力降下量の 推定手法については、壇・他(2005)で議論され ている。壇・他(2005)では、アスペリティの震 源断層に占める面積比を22%に固定し、アスペリ ティの応力降下量を円形クラックの式(Eshelby, 1957)から求めた平均応力降下量を用いて推定す る場合と地震規模によらず14.1MPaとする場合に ついて強震動をシミュレートしている。その結 果、アスペリティの応力降下量を一定とした場合 に距離減衰式とよく対応するとしている。本研究 では、アスペリティの震源断層に占める面積比を 固定せず、平均応力降下量を円形クラックの式を 用いて求める手法を採用している。その結果、ア スペリティの応力降下量は, t-L modelで 11.9MPa, s-L modelで13.9-16.3MPaと設定して いる。本研究で設定したアスペリティの応力降下 量は、 壇・他(2005) で 適切 であるとされた 値と 著しく異なるものではない。

3.2 破壊シナリオの影響

最大水平速度に対する破壊開始点の位置の影響 について考察する。そのために、各観測点につい て、同じモデルで破壊開始点が異なる3つのケー スの合成波形の最大水平速度を求め、それらの最 大と最小の比 (ケース比)を算出した。その結果, ケース比の平均値は、t-L model、s-L model を仮 定した場合でそれぞれ、1.4、1.5となった。ここ で得られたケース比は、モデルケース比の最大値 や、それぞれのモデルで設定された地震規模の違 いにのみ依存する経験的な PGV 比と同等の値を 示している。これは、地震規模予測手法の違いが 強震動予測結果にもたらす影響と。

破壊開始点の 位置の違いが予測結果にもたらす影響とが同程度 であることを意味している。そのため、複数のセ グメントが破壊されるような地震の強震動予測を 行う上で、2つの地震規模予測手法についての議

論を行うことには意味があり、より適切な手法を 選択することが必要である。また、本研究では中 田・他(1998)のモデルを用いて3つの破壊シナ リオを設定しているが、予測結果に対する破壊開 始点の位置の影響を考えて、いくつもの破壊シナ リオを想定することが重要であると考えられる。

3.3 予測される震度分布,及び,地震調査研 究推進本部(2002)の強震動予測との比較

図10は、想定地震の加速度波形から算出した計 測震度について、モデルケースごとに10回のシ ミュレーション結果の平均値を求め地図上に示し たものである。図10を見ると、中部1セグメント と中部2セグメントの西側に位置する GIF007(高

図10 各モデルケースについて求めた計測震度の分布図。括弧内の数字は計測震度の値を示している。(a) total-L model, (b) segment-L model.

(a) total-L model

根), NGN013 (安曇), NGN017 (楢川) で震度が 6 弱から6 強, 中部2セグメントの南端部に位置 する NGN016 (富士見) で震度7となっている。
t-L model を仮定した場合には, すべての観測点 で震度5 強以上を示した。t-L model を仮定した 場合と s-L model を仮定した場合の計測震度の差 を求めると, t-L model のほうが平均で0.1, 最大 で0.3大きいという結果が得られた。

次に、地震調査研究推進本部(2002)の強震動 予測結果と t-L model を仮定した場合の予測結果 との比較を行った。地震調査研究推進本部(2002) では、本研究のt-L modelと同じ手法で、地震規 模とアスペリティ面積が設定されている。表5 は、本研究の t-L model を仮定した場合と地震調 査研究推進本部(2002)の詳細法による強震動評 価での震源断層のサイズ、地震モーメント、震源 断層に占めるアスペリティの面積比, アスペリ ティの応力降下量の設定の違いを示している。震 源断層のサイズについては、両者の設定で各セグ メントの長さと幅が異なっている。断層幅の違い は、中部1と中部2セグメントについて、本研究 と地震調査研究推進本部(2002)では異なる傾斜 角を採用しているためである。震源断層面積が両 者の設定でほぼ同じにもかかわらず地震モーメン トが1.3倍異なるのは、地震調査研究推進本部 (2002)と本研究で用いている断層面積と地震モー メントの関係式が異なっているためと考えられ る。また、波形合成の手法は、本研究では経験的 グリーン関数法を用いているのに対し, 地震調査 研究推進本部(2002)ではハイブリッド法が用い られている。

地震調査研究推進本部(2002)の強震動予測と 破壊開始点が同じであるケース2の場合について 最大速度の比較を行った。本研究で評価した11観 測点のうち、地震調査研究推進本部(2002)の評 価対象地域には4観測点が含まれる。NGN014 (小海). NGN020(伊那)では、地震調査研究推 進本部(2002)で予測された最大速度が、本研究 で得られた最大速度よりそれぞれ1.3倍。1.2倍大 きくなっている。一方, NGN013 (安曇) と NGN016(富士見)では、本研究で得られた最大 速度が、地震調査研究推進本部(2002)で予測さ れた最大速度よりそれぞれ1.8倍、1.7倍大きく なっている。こうした最大速度の違いは、設定さ れているパラメータの違い. ハイブリッド法で強 震動を計算する際に用いられた地盤構造の影響や 地表の値に換算するための地盤増幅率に起因する ものと考えられる。

4. 結論

糸魚川 - 静岡構造線活断層帯を対象として,地 震の規模予測手法とアスペリティの面積の設定手 法が異なる t-L model と s-L model の 2 つの「モ デル」と、3 つの破壊シナリオ (ケース)を組み 合わせた 6 つの特性化震源モデル(モデルケース) について地震動の計算を行った。予測結果を距離

表5 total-L model を仮定した場合と地震調査研究推進本部(2002)の強震動評価のパラメータ設定の比較

		North1	North2	Middle1	Middle2	
total-L model	総断層面積(km ²)	1893				
	総地震モーメント (N・m)	1.99E +20				
	震源断層に占めるアスペリティの面積比(%)	49				
	アスペリティの平均応力降下量 (MPa)	11.9				
	セグメントの長さ (km)	26.1	36.7	16.0	32.0	
	セグメントの幅 (km)	20.2	20.2	13.0	13.0	
02)	§ 総断層面積(km ²) 1905					
部(2	総地震モーメント (N・m)	1.50E +20				
地震調査研究推進本	震源断層に占めるアスペリティの面積比(%)	33				
	アスペリティの平均応力降下量(MPa)	13. 1				
	セグメントの長さ (km)	26.0	35.0	17.0	34.0	
	セグメントの幅 (km)	20.2	20.2	13.2	13.2	

減衰式(司・翠川,1999)との比較から検証した 後,合成波形の最大水平速度をモデルやケース間 で比較し,モデル化手法の違いによる強震動予測 結果への影響について考察した。

予測結果を距離減衰式(司・翠川, 1999)と比 較した結果, t-L model, s-L model を仮定した両 方の場合で、最大水平速度は経験的な地震動の距 離減衰のばらつきの範囲内に収まり、予測結果は 妥当なものであった。同じ破壊シナリオ(ケース) における2つのモデルによる合成波形の最大水平 速度を各観測点で比較した結果, t-L modelの方 が s-L model に比べて平均で1.1-1.2倍大きくな り、最大で1.4倍の違いが認められた。一方、そ れぞれのモデルで設定される地震規模と距離減衰 式から求めた最大水平速度の違いは平均で1.4倍 であった。以上の最大水平速度についての違い は、モデルを固定し、異なる破壊シナリオ(ケー ス)を設定することによって生じる最大水平速度 の違い(1.4-1.5倍)と同程度であることが分かっ た。複数のセグメントが破壊されるような地震の 強震動予測を行う上で、2つの地震規模予測手法 についての議論を行うことには意味があり、より 適切な手法を選択することが必要である。

本研究では、活断層に関する情報が比較的多い 断層帯を例にとって地震動の計算を行った。活断 層で発生する地震は活動間隔が長く、過去の活動 の累積を示す地表の変位データから将来発生する 地震の規模やアスペリティの水平位置といった震 源パラメータを拘束しなければならない。活断層 情報を強震動予測に利用するためには、地表に残 された過去のイベントの変位と震源断層パラメー タの関係についての評価が必要となる。今後、震 源モデルの高度化のために、活断層研究の写真測 量や野外調査による詳細な変位データと強震動地 震学の成果を連携させていくことが必要である。

謝 辞

本研究では、(独) 防災科学技術研究所の強震観 測網(K-NET),基整強震観測網(KiK-net)のデー タを使用させていただきました。また、防災科学 技術研究所 F-net Project による広帯域地震波形を 用いたメカニズム解析結果を利用させていただき ました。関係者各位に感謝いたします。本稿をま とめるにあたり多部田有紀さんと神野ひふみさん に多数のご意見を頂きました。また、3名の査読 者の方に頂いた有益なご意見により、本稿を改善 することができました。浅野公之博士にはコメン ト・助言をいただきました。記して感謝いたしま す。

本研究は科学研究費補助金基盤研究(C)(1)No. 18540423「長大活断層帯の連動起震モデルの構築と 地震動予測地図への確率論的応用手法の検討」(研 究代表者:岡山大学・隈元 崇准教授),京都大学 防災研究所萌芽的共同研究19H-01「地震の規模予 測高度化のための強震動地震学と活断層研究の成 果統合手法の開発」(研究代表者:岡山大学・隈 元 崇准教授),および科学研究費補助金基盤研 究(A)(1)No.17200053(研究代表者:広島工業 大学・中田 高教授)によってサポートされた。

参考文献

- Aoi, S., K. Obara, S. Hori, K. Kasahara, and Y. Okada: New strong-motion observation network, KiK-net, Eos Trans. Am. Geophys. Union, 81, 329, 2000.
- Asano, K., T. Iwata, and K. Irikura: Estimation of source rupture process and strong ground motion simulation of the 2002 Denali, Alaska, earthquake, Bull. Seism. Soc. Am., Vol. 95, pp. 1701–1715, 2005.
- 粟田泰夫:日本の地震断層におけるセグメント構造 とカスケード地震モデル(試案),地質調査所速 報, No. EQ/99/3, pp. 275-284, 1999.
- Boatwright, J.: The seismic radiation from composite models of faulting, Bull. Seism. Soc. Am., Vol. 78, pp.489–508, 1988.
- Brune J. N.: Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res., Vol.75, pp.4997–5009, 1970.
- Brune J. N.: Correction, J. Geophys. Res., Vol. 76, pp. 5002, 1971.
- 壇 一男・渡辺基史・佐藤俊明・石井 透:断層の 非一様すべり破壊モデルから算定される短周期 レベルと半経験的波形合成法による強震動予測

のための震源断層のモデル化,日本建築学会構 造系論文集,No.545, pp.51-62, 2001.

- 壇 一男・武藤尊彦・宮腰淳一・渡辺基史:長大な 横ずれ断層による内陸地震のアスペリティにお ける実効応力の推定と強震動シミュレーショ ン,日本建築学会構造系論文集,No.589,pp. 81-88,2005.
- Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc., A241, pp.376–396, 1957.
- Fujii, Y. and M. Matsu'ura: Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication, Pure and Applied Geophysics, Vol.157, pp.283–2302, 2000.
- 福山英一·石田瑞穂·Douglas S. Dreger · 川井啓廉: オンライン広帯域地震データを用いた完全自動 メカニズム決定, 地震2, Vol. 51, pp. 149–156, 1998.
- Geller, R. J.: Scaling relations for earthquake source parameters and magnitudes, Bull. Seism. Soc. Am., Vol.66, pp.1501–1523, 1976.
- 星野通平・青木 斌:伊豆半島,東海大学出版会, pp. 73-93, 1972.
- 池田隆明・釜江克宏・三輪 滋・入倉孝次郎:経験 的グリーン関数法を用いた2000年鳥取県西部地 震の震源のモデル化と強震動シミュレーショ ン,日本建築学会構造系論文集,No.561,pp. 37-45,2002.
- Irikura, K.: Prediction of strong acceleration motions using empirical Green's function, Proc. 7th Japan Earthq. Eng, pp.151–156, 1986.
- 入倉孝次郎:経験的グリーン関数法による強震動予 測-波形合成の手続き(procedure)とその問題 点-,京都大学防災研究所年報, Vol. 32 B-1, pp. 41-52, 1989.
- 入倉孝次郎:震源のモデル化と強震動予測, 地震2, Vol. 46, pp. 495-512, 1994.
- Irikura, K. and K. Kamae: Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique, Annali di Geofisica, Vol.37, pp.1721–1743, 1994.
- 入倉孝次郎・三宅弘恵:シナリオ地震の強震動予測, 地学雑誌, Vol.110, No.6, pp.849-875, 2001.
- 入倉孝次郎・三宅弘恵・岩田知孝・釜江克宏・川辺 秀憲:将来の大地震による強震動を予測するた めのレシピ,京都大学防災研究所年報, Vol.

46 B, pp. 105-120, 2003.

- 糸静線活断層系発掘調査研究グループ:糸静線活断 層系中部,若宮,大沢断層の性格と第四紀後期 における活動-富士見,茅野における発掘調査-, 東京大学地震研究所彙報, No.63, pp.349-408, 1988.
- 岩田知孝・入倉孝次郎:観測された地震波から,震 源特性・伝播経路特性及び観測点近傍の地盤特 性を分離する試み,地震2, Vol. 39, pp. 579-593, 1986.
- 岩田知孝・三宅弘恵:強震動予測レシピに基づくシ ナリオ地震による強震動シミュレーション-琵 琶湖西岸断層系北部を起震断層として-,自然 災害科学, Vol. 23, No. 2, pp. 259-271, 2004.
- 地震調査研究推進本部地震調査委員会,糸魚川-静岡 構造線活断層系の調査結果と評価について,日本 語,http://www.jishin.go.jp/main/chousa/96 augit/ index.htm, 1996, 2007年8月31日.
- 地震調査研究推進本部地震調査委員会,糸魚川-静 岡構造線断層帯(北部,中部)の地震を想定し た強震動評価について,日本語,http://www. jishin.go.jp/main/kyoshindo/02 oct_itoshizu/index. htm, 2002, 2007年8月31日.
- 地震調査研究推進本部地震調査委員会, 震源断層を特 定した地震の強震動予測手法, 日本語, http://www. jishin.go.jp/main/kyoshindo/05 jul_chuokozosen/ furoku.pdf, 2005, 2007年8月31日.
- 釜江克宏・入倉孝次郎:1995年兵庫県南部地震の断層モデルと震源近傍における地震動シミュレーション、日本建築学会構造系論文集, No. 500, pp. 29–36, 1997.
- Kamae, K., and K. Irikura: Source model of the 1995 Hyogo-ken Nanbu earthquake and simulation of near-source ground motion, Bull. Seism. Soc. Am., Vol.88, pp.400–412, 1998.
- 活断層研究会,新編日本の活断層-分布図と資料, 東京大学出版会,437p.,1991.
- Kanamori, H. and D. L. Anderson: Theoretical basis of some empirical relations in seismology, Bull. Seism. Soc. Am., Vol.65, pp.1073-1095, 1975.
- Kinoshita, S.: Kyoshin Net (K-NET), Seism. Res. Lett., Vol. 69, pp.309–332, 1998.
- 広帯域地震観測網 F-net, 日本語, http://argent.geo. bosai.go.jp/freesia/index-j.html, 2007年9月19日.
- Kuriyama, M., T. Kumamoto, and M. Fujita: Ground Motion Simulation of a Large Active Fault System Using the Empirical Green's Function

Method and the Strong Motion Prediction Recipe – Nobi Fault Zone Case Study and Future Predictions in the ISTL Fault System – , 2005 American Geophysical Union Fall Meeting, S51 D-1043, 2005.

- 栗山雅之・隈元 崇:活断層データを用いた濃尾地 震の強震動パラメータスタディ,日本地球惑星 科学連合2006年大会予稿集,S208-P008,2006.
- 栗山雅之・岩田知孝・隈元 崇:経験的グリーン関 数法による強震動評価と震度分布情報を用いた 1891年濃尾地震の震源モデルの推定,日本地震学 会2006年度秋季大会講演予稿集,D008,2006.
- Madariaga, R.: On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity, J. Geophys. Res., Vol.84, pp.2243–2250, 1979.
- 松田時彦:1891年濃尾地震の地震断層, 地震研究所 研究速報, No.13, pp.85-126, 1974.
- 松岡昌志・翠川三郎:国土数値情報とサイスミック マイクロゾーニング,第22回地盤震動シンポジ ウム資料集, pp.23-34,1994.
- 松島信一・川瀬 博:1995年兵庫県南部地震の複数 アスペリティモデルの提案とそれによる強震動 シミュレーション,日本建築学会構造系論文 集,No.534, pp.33-40, 2000.
- 松島義章・伴 信夫:糸魚川-静岡構造線の活動に よって変位した諏訪湖南東岸の縄文住居址,第 四紀研究, Vol. 18, No. 3, pp. 155-164, 1979.
- 松多信尚・澤 祥・安藤俊人・廣内大助・田力正好・ 谷口 薫・佐藤善輝・石黒聡士・内田主税・佐 野滋樹・野澤竜二郎・坂上寛之・隈元 崇・渡 辺満久・鈴木康弘:写真測量技術を導入した糸 魚川 - 静岡構造線断層帯北部(栂池 - 木崎湖)の 詳細変位地形・鉛直平均変位速度解析,活断層 研究, No. 26, pp. 105-120, 2006.
- McCalpin, J. P.: Application of paleoseismic data to seismic hazard assessment and neotectonic research, Academic Press, pp.439–493, 1996
- 村松郁栄・小見波正隆:濃尾地震(明治24年)当時 のアンケート調査回答集,防災科学技術研究所 研究資料, No. 155, 841 p., 1992.
- 中村洋光・宮武 隆:断層近傍強震動シミュレーションのための滑り速度時間関数の近似式, 地震2,
 Vol. 53, pp. 1-9, 2000.
- 中田 高・島崎邦彦・鈴木康弘・佃 栄吉:活断層 はどこから割れ始めるのか? – 活断層の分岐形 態と破壊伝播方向 – , 地学雑誌, Vol. 107, pp.

512-526, 1998.

- 中田 高・今泉俊文:「活断層詳細デジタルマップ」, 東京大学出版会, 60 p., 2002, (product serial number: DAFM0008).
- 奥村晃史・井村隆介・今泉俊文・澤 祥・東郷正美: 糸魚川-静岡構造線活断層系の活動履歴調査, 地質調査所研究資料集, No. 259, pp. 89-94, 1996.
- 奥村晃史・井村隆介・今泉俊文・東郷正美・澤 祥・ 水野清秀・苅谷愛彦・斉藤英二:糸魚川-静岡 構造線活断層系北部の最近の断層活動-神城断 層・松本盆地東縁断層トレンチ発掘調査-,地 震2, Vol.50, pp.35-51, 1998.
- 奥村晃史・下川浩一・山崎晴雄・佃 栄吉:糸魚川-静岡構造線活断層系の最近の断層活動-牛伏寺 断層・松本市並柳地区トレンチ発掘調査-,地 震2, Vol.46, pp.425-438, 1994.
- 大西良広・堀家正則:震源近傍での地震動予測のた めの拡張統計的グリーン関数法とそのハイブ リッド法への適用に関するコメント,日本建築 学会構造系論文集,No.586, pp.37-44, 2004.
- 佐藤智美・川瀬 博・佐藤俊明:表層地盤の影響を 取り除いた工学的基盤波の統計的スペクトル特 性, 仙台地域のボアホールで観測された多数の 中小地震記録を用いた解析,日本建築学会構造 系論文集, No.462, pp.79-89, 1994.
- 澤祥・田力正好・谷口 薫・廣内大助・松多信尚・ 安藤俊人・佐藤善輝・石黒聡士・内田主税・坂 上寛之・隈元 崇・渡辺満久・鈴木康弘:糸魚 川-静岡構造線断層帯北部,大町~松本北部間 の変動地形認定と鉛直平均変位速度解明,活断 層研究, No.26, pp.121-136. 2006.
- Schwartz, D. P. and K. J. Coppersmith: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, Jour. Geophys. Res., Vol.89, pp.5681–5698, 1984.
- 司 宏俊・翠川三郎:断層タイプ及び地盤条件を考 慮した最大加速度・最大速度の距離減衰式,日 本建築学会構造系論文集,No.523, pp.63-70, 1999.
- 下川浩一・水野清秀・井村隆介・奥村晃史・杉山雄 一・山崎晴雄:1:100,000糸魚川-静岡構造線 活断層系ストリップマップ,構造図,11,地質 調査所,1995.
- Somerville, P. G., Irikura, K., R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada: Characterizing crustal

earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., Vol.70, pp.59-80, 1999.

- 東郷正美・今泉俊文:1983年糸静線活断層系(岡谷 地区中島A遺跡地)トレンチ調査,活断層研究, No.5, pp.3-10, 1988.
- 鶴来雅人・香川敬生・入倉孝次郎・古和田明:近畿 地方で発生する地震の fmax に関する基礎的検討, 地球惑星科学関連学会合同大会予稿集, pp.103, 1997.
- Wells, D. L. and K. J. Coppersmith: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am., Vol.84, pp.974–1002, 1994.
- Working Group on California Earthquake Probabilities: Seismic hazards in Southern California; Probable earthquake, 1994 to 2024, Bull. Seism. Soc. Am., Vol.85, pp.379–439, 1995.
- 山田雅行・平井俊之・岩下友也・釜江克宏・入倉孝 次郎:兵庫県南部地震の震源モデルの再検討, 日本地震学会講演予稿集, A14, 1999.

(投稿受理:平成19年3月29日 訂正稿受理:平成20年1月8日)