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1.    INTRODUCTION

Studies of structure collapse behavior are very important in
order to reduce the number of casualties that occur during earth-
quakes.  From the numerical point of view, structures undergo
small and large displacements before collapse.  In the small dis-
placement range, the variation of the structure geometry during
loading can be neglected.  The buckling of columns, however, a
main reason of structural failure, can only be detected by large dis-
placement theory.

The Finite Element Method (FEM) has been considered the
main tool for studying structural buckling behavior.  By its use, the
buckling mode and load, as well as post-buckling behavior, can be
followed (Waszczyszyn et al. 1994; Szabo et al. 1986).
Unfortunately, the FEM assumes that a material is a continuum,
and special techniques must be adopted to consider the separation
of structural members.  In most cases, the fracture plane is arbi-
trary and unknown before analysis.  Modeling of the separation
using joint elements is reliable only when the crack location can be
predicted.  This condition is common to numerical methods that
consider the structure as a continuum.

A recent method that deals with structure failure analysis is
the Modified or Extended Distinct Element Method, MDEM or
EDEM (Meguro and Hakuno, 1989, 1994).  It can follow highly
nonlinear geometric changes in the structure during failure.  Its
main disadvantage when compared to the FEM, however, is that it
is less accurate in the small displacement range and requires rela-
tively longer CPU time.  The applicability of the EDEM or other
methods that adopt rigid elements, such as the Rigid Body and
Spring Model, RBSM (Kawai, 1980; Kikuchi et al, 1992), has not
been verified for buckling analysis.  Discontinuous Deformation

Analysis (Amadei et al, 1996; Sitar et al., 1997) has been used for
the large deformation of rock blocks, but it too is limited to analy-
sis of elements that are separated from the beginning of analysis.
It is not verified in cases in which deformation is small.  

Our proposed method, the Applied Element Method (AEM),
is based on division of the structural members into virtual elements
connected through springs.  Each spring entirely represents the
stresses, strains, deformations, and failure of a certain portion of
the structure.  The main advantage of this method is that it can fol-
low structural behavior from the initial loading stages until com-
plete collapse with reliable accuracy in reasonable CPU time.  The
applicability and accuracy of the AEM in various fields have been
discussed elsewhere (Tagel-Din and Meguro, 1998, 1999, 2000;
Meguro and Tagel-Din, 1997,1998).

The current areas of AEM application are given in Table 1.
Numerical results were compared with theoretical and experimen-
tal results whenever possible for each field of application.  Tagel-
Din and Meguro (1998) and Meguro and Tagel-Din (1997, 1998)
verified the accuracy of the AEM in small deformation ranges.
Effects of Poisson’s ratio, normally neglected in methods based on
rigid body elements, also are successfully handled (Tagel-Din and
Meguro, 1998).  The AEM can track complicated nonlinear behav-
ior such as crack initiation, propagation, and opening and closure,
as well as estimate failure loads (Meguro and Tagel-Din, 1997,
1998).

To follow structural behavior until complete collapse, accura-
cy of the method in the large displacement range must be verified
quantitatively.  We here present the AEM basic formulation and
discuss the adjustments needed for analysis of structures subjected
to large displacements.  Unlike other methods, in the AEM there is
no need to determine the geometrical stiffness matrix.  This makes
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the method general and applicable to different loading and struc-
ture types.

Its accuracy in the large displacement range is verified by
comparing the numerical results with theoretical ones for the buck-
ling and post-buckling stages; agreement is very good.  The aim of
the proposed method is to simulate the behavior of a structure from
the stage in which no load is applied until complete collapse.
Results presented here show the applicability of the method to
large deformation analysis.  Note that this research is one of the
first attempts to utilize rigid body elements with three degrees of
freedom for the study of structure buckling behavior.

2.    APPLIED ELEMENT METHOD FORMULATION

In the AEM, the structure is divided in small elements as
shown in Fig. 1.  Two elements are assumed to be connected at
discrete points along their edges by a pair of normal and shear
springs.  Spring stiffness is determined by 

(1)

where d is the distance between springs, T the element thickness, a
the length of the representative area, E the material Young’s modu-
lus, and G the material shear modulus.  Equation (1) implies that

each spring represents the stiffness of a volume with the dimen-
sions d, T, and a.  When reinforcement is present, rebar stiffness is
added to the material stiffness found with Equation (1).  In the
two-dimensional model, each element has three degrees of free-
dom (DOF), which represent the element’s rigid body motion.
Although elements move as rigid bodies (element shape does not
change), internal deformations are represented by spring deforma-
tions (the element assembly is deformable).  Tagel-Din and
Meguro (1998) introduced the Poisson’s ratio effect to the AEM.

Stiffness matrix components are determined by applying a
unitary displacement to a DOF while keeping the remaining DOF’s
fixed.  The forces needed to generate this configuration are the
stiffness matrix components, which are equal to the summation of
the contributions of the springs surrounding the element.  The con-
tribution of the contact spring shown in Fig. 2 to DOFs u1, u2, and
u3 is

(2)

where all the terms are illustrated in Fig. 2.  Equation (2) shows

  Sin2(θ+α)Kn －KnSin(θ+α)Cos(θ+α)   Cos(θ+α)KsLSin(α)
+Cos2(θ+α)Ks +KsSin(θ+α)Cos(θ+α) －Sin(θ+α)KnLCos(α)
－KnSin(θ+α)Cos(θ+α)   Sin2(θ+α)Ks   Cos(θ+α)KnLCos(α)
+KsSin(θ+α)Cos(θ+α) +Cos2(θ+α)Kn +Sin(θ+α)KsLSin(α)
  Cos(θ+α)KsLSin(α)   Cos(θ+α)KnLCos(α)   L2Cos2(α)Kn

－Sin(θ+α)KnLCos(α) +Sin(θ+α)KsLSin(α) +L2Sin2(α)Ks

Kn =  EdT and Ks = GdT
a a
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Fig. 1 Modeling of the structure in the AEM

Table 1. Areas of Application of AEM
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one-quarter of the element stiffness matrix.  The global stiffness
matrix, K, is found by summing up the contributions of all the
springs in the system.

In spite of its relatively simple formulation, the AEM has been
used successfully for the nonlinear analysis of RC structures sub-
jected to small deformations (Meguro and Tagel-Din, 1998).  It
cannot, however, be used for large deformation analysis unless
geometrical changes in the structure’s shape are considered.

3.   LARGE DISPLACEMENT ANALYSIS WITH AEM

3.1    Numerical Procedure 
Whereas in the FEM the effects of large displacements are

considered by adopting a geometrical stiffness matrix
(Waszczyszyn et al., 1994), in the AEM there is no need for such a
matrix.  This makes the method more general and applicable to any
type of loading or structure.  One limitation of the AEM is that the
direction of the applied forces is assumed to be constant.  Because
of this, loading conditions (Waszczyszyn et al., 1994) in which the
force direction changes, as present when a member buckles, cannot
be analyzed by the AEM.

To adapt the formulation in the previous section for static
large deformation analysis, the following modification is intro-
duced:

KΔΔU = ΔΔf + Rm + RG (3)

where K is the nonlinear stiffness matrix, ΔΔU the incremental dis-
placement vector, ΔΔf the incremental load vector, Rm the residual
force vector due to cracking or incompatibility between spring
strains and stresses, and RG the residual force vector due to geo-
metrical changes in the structure during loading.

Application of the AEM:
1. Assume that Rm and RG are null and solve Equation (3) to getΔΔU. 
2. Modify the structural geometry according to the calculated

incremental displacements.
3. Modify the direction of the spring force vectors according to the

new element configuration.  The geometrical changes generate
incompatibility between the applied forces and internal stresses. 

4. Verify whether cracking occurred and calculate Rm .  In elastic
analysis Rm is zero.

5. Calculate the element force vector, Fm , by summing the forces of
the springs around each element.

6. Calculate the geometrical residuals around each element with
Equation (4).

RG = f - Fm (4)

where f is the applied force vector.  Equation (4) implies that
geometrical residuals account for the incompatibility between
the external applied and internal forces due to modification of
the structure’s geometry.

7. Small deformations are assumed during each increment.
8. Calculate the stiffness matrix for the structure with the new con-

figuration considering stiffness changes due to cracking or
yielding.

9. Repeat the entire process.
Residuals calculated in the previous increment can be incor-

porated in the solution of Equation (3), which reduces the calcula-
tion time.

Although the technique presented is simple, the numerical
results show high accuracy.  The following limitations were noted: 
1. Complete symmetry of the structure and loading must be avoid-

ed in buckling analysis.  The symmetry can be broken by slight
changes in the material parameters of a part of the structure.

2. Small displacement theory is assumed during each increment.
The load or displacement increments therefore should be small. 

3. In many applications, the apparent structure stiffness decreases
after buckling; hence, the applied load also should decrease.  In
load control analysis with a positive load increment, the cumu-
lative difference between the applied and internal loads appears
after buckling.  Applying additional load increments after buck-
ling results in the divergence of geometrical residuals, produc-
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Fig. 2    Element shape, contact point, and degrees of freedom
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ing large geometrical changes within a few increments.
Because of this, in some cases it is impossible to obtain a solu-
tion.  Displacement control analysis is suggested to overcome
this problem, but that method is limited to cases in which there
are few prescribed displacements.  For a more general solution,
the proposed technique can be modified to adopt the energy or
arc length method (Kleiber, 1989). 

3.2    Simulation of a simply supported rubber beam 
By the small displacement theory
This example is introduced to show why the AEM cannot deal

with large displacement analysis unless the modifications listed in
section 3.1 are executed.  The beam shown in Fig. 3, span 12.0 m,
and square cross section side equal to 1.0 m, is simply supported

(pinned support at one side, roller at the other) and subjected to a
concentrated load at its center.  The material is elastic.  Young’s
modulus is 210 MPa.  The following are seen from the deformed
shape shown in Fig. 3:
1. Beam deformation is acceptable in the small displacement

range.
2. The volume of the beam increases when analysis continues up to

very large deformations.
3. The roller does not move even for large deformations.  This is

not realistic.

By the large displacement theory
The same beam under the same loading was analyzed by large

displacement formulation to check the accuracy of the proposed
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Fig. 4    Deformed shape of a simple supported beam (Large displacement analysis)

Fig. 3    Deformed shape of a simple supported beam (Small displacement analysis)
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adjustments.  In that case, the realistic results shown in Fig. 4 were
obtained.  Load displacement relationships before and after modifi-
cation are shown in Fig. 5.  DY and DY\ respectively represent dis-
placements at the beam center when small and large displacement
analyses are performed.  Similarly DX and DX\ represent roller
displacement in those cases.  The following are seen from the
results:
1. In the small displacement range, DY and DY\ are similar.
2. DX\ increases as the applied load increases, whereas DX is

almost zero.  Fig. 5 shows that DX\ is negative at the beginning.
This is because of the rotation of the beam’s cross section about
the neutral axis.

3. During loading, the shape of the beam changes from a straight
line to an arch.  This shows that beam stiffness increases when
geometrical changes are considered. 

3.3    Simulation of buckling and post-buckling behavior 
Fixed base column
The first case study of buckling and post-buckling behavior is
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Fig. 5    Load versus displacement of a simple supported beam analyzed by considering or not geometrical residuals

Fig. 6    Post buckling behavior of an elastic column
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that of a fixed base elastic column subjected to axial load.  The
load direction is assumed to be constant during the analysis.
Column height is 12.0 m, and the side of the square cross section is
1.0 m.  Young’s modulus is 840 MPa.  Analysis is performed for
300 elements, and vertical displacement is applied to the top of the
column at a constant rate.  To break the system’s symmetry, the
stiffness of the left edge element at mid-height is increased by 1%
with respect to the other elements.  Figure. 6 shows the deformed
shape of the column before and after buckling.  Obviously, the
highly nonlinear geometrical changes have been successfully fol-
lowed.

Figure. 7 shows the horizontal and vertical displacements at
the loading point obtained with the AEM, with and without consid-
ering geometrical residuals, and the theoretical load-displacement
relationships (Timoshenko and Gere, 1961).  In the theoretical
analysis, effects of axial and shear deformations are neglected
whereas in AEM analysis these effects, although being relatively
small, are taken into account.

Figures. 6 and 7 indicate the following:

1. Load displacement relationship obtained when geometrical
residuals are considered is close to the theoretical values, even
under very large displacements.  This shows that the proposed
method is accurate and numerically stable.

2. The buckling load calculated using only geometrical modifica-
tions, not geometrical residuals, is approximately 470 KN, larg-
er than the theoretical value, 78 KN.  This shows that consider-
ing only geometrical modifications is not sufficient to obtain
accurate results. 

3. The calculated load displacement relation is tangential to the
horizontal line at the buckling load.  This is in good agreement
with theoretical results. 

4. A slight increase in the load after buckling results in very large
displacements.  This indicates that applying the load control
technique after buckling produces very large deformations in
only a few increments.

5. When vertical displacement is about 9 m, horizontal displace-
ment starts to decrease. 

6. The column shape changes after buckling, increasing the speci-
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Fig. 7    Load displacement relationship of an elastic column subjected to vertical loading

Fig. 8    Load versus vertical normal stress at point A
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men’s stiffness.
Figure. 8 shows the relationship between the load and vertical

normal stress at point A under the load application point.  Before
buckling, stress is mainly uniform compression and increases lin-
early.  When the buckling load is reached, compression stresses
decrease until zero is reached, stage (8) in Fig. 6, when the load
direction is parallel to the column edge.  After this, tension stresses
develop and increase.

Internal stress changes at the intermediate sections are shown
in Fig. 9.  Before buckling, the stresses are mainly uniform com-
pression and only axial deformation occurs.  After reaching the
buckling load, although the applied load is constant (P=78 KN),

buckling bending moments appear and cause large deformation.
The strong point of the AEM is that it accurately follows the
behavior of any point in the structure even if large deformations
occur.

Snap through buckling of a two-member truss
The second case study is that of simulation of the buckling

behavior of a two-member truss (Szabo et al., 1986).  Figure. 10
shows the truss layout and loading point location.  The material
Young’s modulus is 210 MPa.  Due to structural symmetry, only
half the truss is analyzed using 0.1m-side square elements.  The
load was applied at a constant rate.

Fig. 10 Relationships between applied load, member force, and the displacement ratio for ver-
tical displacement applied at constant rate

Fig. 9 Variation in the internal stress distribution during buckling
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Figure. 10 shows the relationship between the applied load,
member force, and displacement ratio.  When results are compared
with theoretical ones, there is almost no difference.  It took only
one minute to perform the AEM analysis with a personal computer
(CPU Pentium 267 MHz).

The truss passes through the following deformation stages:
1. At first, member length decreases and the compression force

increases.  The shortest member length, which corresponds to
the maximum compression stresses, is obtained when truss
members are horizontal.

2. At this instant, the compression force is maximum, and the
applied load is zero in the horizontal direction.

3. Increasing the displacements after the members become hori-
zontal increases the member length; hence, the compression
force is released.  The direction of the applied load is reversed.

4. When (d/H) (refer to Fig. 10) equals 2.0, the final member
length is the same as the initial length.  The member force and
applied load therefore become zero.

5. Increasing the applied displacement increases the tension force
in the members.

Elastic Frame under Different Support Conditions
The third case study is the simulation of the buckling of an

elastic frame.  The following cases are solved:
1. Sway frame with fixed supports
2. Nonsway frame with fixed supports
3. Sway frame with hinged supports

Two vertical loads are applied to the tops of the columns.  The
frame dimensions and location of the loading points are shown in
Fig. 11.  The frame has a 0.5-m side square cross section.  Young’s
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Fig. 12 Load displacement relationship for a nonsway frame with fixed supports subjected to vertical loads calculated by the AEM

Fig. 11 Load displacement relationship for a sway frame with fixed supports subjected to vertical loads



APPLIED ELEMENT METHOD USED FOR LARGE DISPLACEMENT STRUCTURAL ANALYSIS

modulus is 210 MPa.  The load is applied at a constant rate.  To
break the system’s symmetry, the stiffness of one of the edge ele-
ments is increased by 1% with respect to the other elements.  This
analysis cannot be performed under displacement control because,
after buckling, the displacements of the frame corners differ due to
change in axial force in the columns.  To carry out the analysis
under load control, it is necessary to use very small load incre-
ments after buckling.

Results of the analysis for the first case, 136 elements, are
shown in Fig. 11.  The buckling load obtained is very close to the
theoretical one (Timoshenko and Gere, 1961).  After buckling, dis-
placements markedly increase in a few increments because loading
is applied under load control.

Figure. 12 shows the results for the second case.  Due to sym-
metry, the analysis is performed for only half of the frame.  As the
load is applied at only one point, analysis can be made under dis-
placement control up to large displacements without loosing stabil-
ity.  The buckling load is higher than in the previous case.  The
theoretical buckling load is not available for this case.  The
obtained buckling mode, shown in Fig. 12, however, seems realis-
tic.  The analysis was stopped before recontact of the elements.
Tagel-Din and Meguro (1999, 2000) discussed the recontact issue
in detail.

Figure. 13 shows the results for the third case.  The analysis of
306 elements was performed under load control.  The buckling
load obtained is very close to the theoretical one (Timoshenko and
Gere, 1961) but smaller than that for a frame with fixed supports.

4.   CONCLUSIONS

We present a new extension of the AEM for the analysis of
structures subjected to large displacements.  Comparison of the
results obtained by the AEM with those obtained by theoretical
formulations, showed the applicability of the proposed techniques.
The advantages of AEM for large displacement analysis are:

1. It is relatively simple compared to other numerical techniques.
2. It accurately follows structural behavior even in the range of

large displacements in which large geometrical changes occur.
The simulated buckling loads, modes, and internal stresses
agree well with those found theoretically.

3. It is general and applicable to any type of structure or material. 
4. It is easily extended to follow the large displacement of struc-

tures until total collapse, as shown by Tagel-Din and Meguro
(1999, 2000).

The following limitations also were identified:
1. Load direction is constant.  Subsequent loading conditions

(Waszczyszyn et al 1994) and non-conservative loads cannot be
studied by use of the proposed formulation.

2. Although the load can be applied by either load or displacement
control, both have limitations.  The load control technique can-
not follow post peak behavior, and the displacement control
technique cannot follow cases when the tangent to the load
deformation curve tends to be vertical (Kleiber, 1989).  In addi-
tion, the displacement control technique cannot be adopted for
cases in which a load is applied at many points.  In spite of this,
the AEM method can be extended to follow other loading meth-
ods such as the energy control or arc length control methods
(Kleiber, 1989).
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Fig. 13 Load displacement relationship for a sway frame with hinged supports subjected to vertical loads
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